Modular Representations of Polynomials:
Hyperdense Coding and Fast Matrix
Multiplication

Vince Grolmusz
Department of Computer Science
Eotvos University, Budapest

Abstract—A certain modular representation of multilinear
polynomials is considered. The modulo 6 representation of
polynomial f is just any polynomial f + 6g. The 1-a-strong
representation of f modulo 6 is polynomial f + 2¢ + 3h,
where no two of g, f and h have common monomials.

Using this representation, some surprising applications are
described: it is shown that n homogeneous linear polynomials
ZT1,Z2,...,%n can be linearly transformed to n°® linear
polynomials, such that from these linear polynomials one
can get back the 1-a-strong representations of the original
ones, also with linear transformations. Probabilistic Memory
Cells (PMC?s) are also defined here, and it is shown that one
can encode n bits into n PMC’s, transform n PMC’s to
n°) PMC’s (we call this Hyperdense Coding), and one can
transform back these n°") PMC’s to n PMC’s, and from
these how one can get back the original bits, while from the
hyperdense form one could have got back only n°") bits. A
method is given for converting n x n matrices to n.°™) x n°™)
matrices and from these tiny matrices one can retrieve 1-a-
strong representations of the original ones, also with linear
transformations. Applying PMC’s to this case will return the
original matrix, and not only the representation.

I. INTRODUCTION

Let f be an m-variable, multi-linear polynomial (that
is, every variable appears on the power of 0 or 1) with
integer coefficients, for example f(x1, z2, x3) = 3dx122+
23x1x9x3. For any positive integer m > 1, we say that
multi-linear polynomial f; is a mod m representation
of polynomial f, if the corresponding coefficients of the
two polynomials are congruent modulo m; for example,
fi(x1,x2,23) = 4dx1we 4+ 3x12223 + Sx0 is @ mod
5 representation of the f in the previous example. If
we choose a non-prime-power, composite modulus, say
m = 6, then the modulo 6 representation of polynomial f
is also a modulo 3 and modulo 2 representation at the same
time. This means, that if we examine the properties of the
modulo 6 representations of multi-linear polynomials (or,
equivalently, multi-linear polynomials over ring Zg), it is

Address: Pazmény P. stny. 1/C, H-1117 Budapest, Hungary; E-mail:
grolmusz @cs.elte.hu, http://www.cs.elte.hu/~grolmusz

not probable that we get more interesting properties over
Zg than over fields F5 or Fj.

Over composite, non-prime-power moduli (say 6), how-
ever, we can consider different representations as well. We
will define 1-a-strong representations of polynomials for-
mally in the next section, but now it is enough to say that
the 1-a-strong representation of multi-linear polynomial f
modulo 6 is a polynomial f + 2¢ + 3h, where no two of
f,g and h have common monomials. The last restriction
is necessary, since otherwise the constant polynomial O
would be the 1-a-strong representation modulo 6 of an
arbitrary polynomial f, simply because 0 = f+ 3f —4f.

A. On the motivation

The motivation of the somewhat strange notion of the
1-a-strong representation modulo 2 and 3 comes from the
following results:

In 1992 Barrington, Beigel and Rudich [1] showed a
degree-O(y/n) polynomial representing the n-variable OR
function modulo 6, while it was known that for all prime
moduli that representation needs linear degree in n.

Using this BBR-polynomial, we gave a surprising con-
struction for certain set-systems, falsifying conjectures on
their non-existence in [2], and gave explicit Ramsey-graph
constructions from these set systems in [2] and in [3].

Building onto these results, in [4] we proved, that a
representation modulo 6 (what we call a 0-a-strong repre-
sentation in the next section) of the elementary symmetric
polynomials can be computed dramatically faster than over
any prime moduli. This result plays a main rdle in the
proofs of the present work.

The motivation of defining the Probabilistic Memory
Cells is clearly to give a realistic model of data storage
where our hyperdense coding works.

B. Our Results:

Let m be a non-prime power composite constant (that
is, it is constant in n, e.g., m = 6).

(a) From the n variables x1,x2,...,T,, (each seen as
a l-variable linear function,) we compute ¢ = n°(!)
linear functions 21, 2o, . . ., 2¢, and from these ¢ linear
functions again n linear functions z}, x5, ...),
such that «/ is a l-a-strong representation of linear
function (i.e., variable) z;, for « = 1,2,...,n. Both
computations are linear transformations.

(b) We define Probabilistic Memory Cells (PMC’s). By
an observation of a PMC one can get a constant
amount of information. We encode n bits into n
PMC’s: one bit into one PMC, and we use the first
linear transformation in (a) to transform the n PMC’s
to t = n°() PMC’s (observing these t PMC’s would
yield only O(n°(")) bits of information), and then we
transform these ¢t PMC’s back to n PMC'’s, also with
a linear transformation, and the observation of the
resulting n PMC’s will yield the original n bits. We
call this phenomenon hyperdense coding modulo m.

(c) For any n x n matrix X with elements from set Z,,,
we compute an n°(1) x n°(Y) matrix Z with elements
from set Z,,, such that from Z, one can retrieve the
1-a-strong representation of the n x n matrix X; here
both operations (the computing and the retrieval) are
simple linear transformations.

(d) For n x n matrices X and Y, with elements from
set Zn,, we compute the 1-a-strong representation
of the product matrix XY, with only n°) multi-
plications, significantly improving our earlier result
of computing the 1-a-strong representation of the
matrix-product with n2+t°(1) multiplications [5].

It is clear that by using Probabilistic Memory Cells for
storing each entry of the binary matrix X in (c), matrix
Z can be stored with n°(®) PMC'’s, from which we can
compute the original n x n matrix X, by using the second
linear transform of (c) and observations of the resulting n?
PMC’s. We call this phenomenon the dimension defying
property of the 1-a-strong representation.

II. PRELIMINARIES
A. A-strong representations

In [4] we gave the definition of the a-strong (i.e.,
alternative-strong) representation of polynomials. Here we
define the alternative, and the 0-a-strong and the I-a-
strong representations of polynomials. Note that the 0-
a-strong representation, defined here, coincides with the
a-strong representation of the paper [4].

Note also, that for prime or prime-power moduli, poly-
nomials and their representations (defined below), coin-
cide. This fact also motivates the examination of such
representations.

Definition 1 ([5]): Let m be a composite number with
prime-factorization m = p{'p5*---p;*. Let Z,, denote

the ring of integers modulo m. Let f be a multi-linear
polynomial of n variables over Z,,:

g aax®,

ae{0,1,2,...,d}"

flxr,20,. .. 2y) =

n [e %}

where aq € Zy,, 2 = [[,_; 7. Then we say that

>

«e{0,1,2,...,d}"

[e3

g(‘rlaan"'axn): bax 9

is an

o alternative representation of f modulo m, if
Va € {0,1,2,...,d}" Fje{l1,2,...,4}:
o =bo (mod p;j);

o O-a-strong representation of f modulo m, if it is
an alternative representation, and, furthermore, if
for some i, an # bo (mod pf'), then b, = 0
(mod pf*);

o I-a-strong representation of f modulo m, if it is
an alternative representation, and, furthermore, if
for some i, an # bo (mod pi*), then a, = 0
(mod m);

In other words, for modulus 6, in the alternative rep-
resentation, each coefficient is correct either modulo 2 or
modulo 3, but not necessarily both.

In the 0-a-strong representation, the O coefficients are
always correct both modulo 2 and 3, the non-zeroes are
allowed to be correct either modulo 2 or 3, and if they are
not correct modulo one of them, say 2, then they should
be 0 mod 2. That is, coefficient 1 can be represented by
1, 3 or 4, and nothing else.

In the 1-a-strong representation, the non-zero coeffi-
cients of f are correct for both moduli in g, but the
zero coefficients of f can be non-zero either modulo 2
or modulo 3 in g, but not both.

Remark 2: The 1-a-strong representations of polyno-
mial f can be written in the form:

f+pi' g1+ 05792+ -+ 07 ge,

where the g; have no monomials in common with each
other, nor with f.

Example 3: Let m = 6, and let f(x1,x2,x3) =
122 + o3 + 2123, then g(x1,x9,,x3) = w122 +
4dzxoxs + x123 is a 0-a-strong representation of f modulo
6; g(x1, 2, ,w3) = T1T2 + Tox3 + 1173 + 313 + 4x9 is A
1-a-strong representation of f modulo 6; g(x1, z2,,x3) =
3r122 + 4273 + 2173 + 377 + 4ro is an alternative
representation modulo 6.

Example 4: Let m = 6. Then 0 = 2y — 32y + 2zy is
not a 1-a-strong representation of zy.

B. Previous results for a-strong representations

In [4] we considered elementary symmetric polynomials

S Y =

1c{1,2,...,n} €]
|T|=k

and proved that for constant k, 0-a-strong representations
of elementary symmetric polynomials S can be computed
dramatically faster over non-prime-power composites than
over primes.

In [4], the following theorem was proved:

Theorem 5 ([4]): Let the prime factorization of positive
integer m be m = pi'p5*---p;*, where £ > 1. Then a
degree-2 0-a-strong representation of

Sy = > (1)
i,5€{1,2,..., n}
i#]
modulo m:
> aimiy, (2)

i,5€{1,2,..., n}
i3]

can be computed as the following product:

j=1 \i=1 i=1

where ¢ = exp(O({/logn(loglogn)f=1)) = n°1). More-
over, this representation satisfies that Vi # j : a;; = a;;.
a

The following result is the basis of our theorems in the
present paper.

Theorem 6 ([5]): Let m = p{'ps*---p;*, where
¢ > 1, and py,p2,...,p¢ are primes. Then a
degree-2, 1-a-strong representation of the dot-product
F(x1, o, T Y1, Y2,y - Yn) = Doiq T;y; can be
computed with ¢ = exp(O({/logn(loglogn)t—1)) =
n°1) multiplications of the form

7j=1 \i=1 =1
Proof: Let g(x,y) =
g(‘rlax%"'axnaylayQa"'ayn) be the degree—2

polynomial from Theorem 5 which is a O0-a-strong
representation of S2(z,y). Then consider polynomial

h(z,y) = (1+a2+. . +xn) (1 +y2+. . 4yn) —g(@, y).

(4)
In h(zx,y), the coefficients of monomials x;y; are all 1
modulo m, and the coefficients of monomials x;y;, for ¢ #
7 are O at least for one prime-power divisor of m, and if it
is not O for some prime divisor, then it is 1. Consequently,
by Definition 1, h(x,y) is a l-a-strong representation of
the dot-product f(z,y).]

III. DIMENSION-DEFYING: LINEAR FUNCTIONS

For simplicity, let m = 6.
By Theorem 6, a 1-a-strong representation of the dot-
product Y7 | ;y; can be computed as

> @i +3g(z,y) + 2h(z,y) =

where b;;,c;; € {0,1} and where both g and h

have the following form: . 25 @i Ty, and no term

x;y; appears in both h and g; and, finally t =

exp(O(y/Tognloglogn)) = n°"). Note that every mono-

mial x;y;, ¢ # j has really a coefficient which is a multiple

of 3 or 2, since 1-4=3 modulo 6 and 1-4=3 modulo 6.
Now, let us observe that for each j =1,2,...,¢,

=1

is a linear combination of variables x;.

Let these t = n°(!) linear forms be the encoding of the
n 0-1 variables x;. The decoding is done also from (5):
the 1-a-strong representation of x; can be computed by
plugging in

. .
vt =(0,0,...,71,0,...,0).

Obviously, on the LHS of (5) we get the 1-a-strong
representation of x;, and on the RHS we get a linear
combination of the z; of (6).

By matrix-notation, if z is a length-n vector, and B =
{b;;} is an n x ¢t matrix with b;;’s given in (5), and C =
{cij} is an n x t matrix with ¢;;’s given in (5), then we
can write that

z =B, and 2’ = 2CT = zBCT.

Consequently, z’ = x BC7 is a length-n vector, such that
fori = 1,2,...,n, o, = z; + 3g;(x) + 4h;(x) where
g(x) and h(z) are integer linear combinations (that is,
homogeneous linear functions) of the coordinates of =
such that none of them contains x; and they do not contain
the same x; with non-zero coefficients. The proof of this
fact is obvious from (5). It is easy to see that we proved
the following Theorem (stating for general m this time):
Theorem 7: For any non-prime-power positive integer
m, and positive integer n, there exist effectively com-
putable constant n x ¢ matrices B and C' over Z,,, with
t = n°W), such that for any vector z = (x1,22,...,2p)
with variables as coordinates, the coordinate ¢ of the
length-n vector xBC' is a l-a-strong representation of
polynomial x; modulo m, for i =1,2,...,n.

O

Note, that B has ¢t coordinates (linear functions), while
xBCT has again n coordinates (linear functions). Note
that similar representation is impossible with m prime and
t <n.

For an application of this striking observation we need
the definition of Probabilistic Memory Cells.

IV. PROBABILISTIC MEMORY

The words “probabilistic” and “memory” are rarely
mixed well: a probabilistically behaving memory element
— typically — is not desirable in any computer. Here we
consider 1-0 step functions on the real interval [0,1],
describing some physical object changing its state from
1 to 0 in a random point of the interval [0, 1]. We assume
that the distribution of this point is uniform in the the
real interval [0,1]. We also assume that the distribution
of these random points are independent. The randomness
will assure us that with probability 1, no two different
functions have the state-change at the same moment. We
intend to use integer linear combinations of these functions
for dense data storage. The formal definition is as follows:

Definition 8: An m-Probabilistic Memory Cell (m-
PMC for short) is a step-function p : [0,1] — Z,,, such
that p(i)~%, for i = 0,1,...,m — 1, is a finite union
of subintervals of the interval [0,1]. a € [0,1] is a step-
point of p if limy, p # lim_, p. The step-value in step-
point a is equal to lim, p — lim_, p modulo m. An m-
PMC is simple, if there exists an a € [0, 1] such that
p~ (1) = [0,a], and p=1(0) = (a,1]. A collection of m-
PMC’s p1, p2, - .., pn is called a proper-(n, m)-PMC, if

e every p; is a simple m-PMC, and

o for all ¢ # j, the step-points of p; and p; differ.
The observation operator O(p) returns the (un-ordered) set
of step-values, modulo m, in all the step-points of m-PMC
p, that is, O(p) C {0,1,...,m — 1}, for any m-PMC p.

Note, that the set of the m-PMC’s form a module over
the integer ring Z,,. Note also, that the set of step-points
of an integer linear combination of several m-PMC’s is
a subset of the union of the step-points of the individual
PMCs.

Fact. If the step-points are distributed uniformly and
independently in each of the n simple m-PMC'’s, then their
collection will form a proper-(n, m)-PMC with probability
1.

This is the reason that the word “Probabilistic” appears
in Definition 8.

Example 9: In Figure 1, the linear combination of
simple PMC’s p and &, 2p + 3¢ is also a PMC, and
O(2p +3¢) = {—2,-3} = {4, 3}, with m = 6.

o - v w & O
o - ~ w & O

[[—
I —
p S
5 | e—
4
3
2 N
1
0 S
2p+3¢
Fig. 1. Linear combination of PMC’s p and &.

Example 10: The sum of the members of the proper-
(n,6)-PMC p1, pa2,...,pn is also a 6-PMC £ = > | p;,
and clearly, O(¢) = {5}.

Motivation: We defined PMC’s in order to get appli-
cations for our main results in this work. The notion
is somewhat analogous with quantum computation: we
imagine a PMC as a physical object with m inner states
changing in time (where the time corresponds to the
interval [0,1]), but we can observe only the change of
that inner states (and not the identities of the states). The
motivation of the observation operator is also comes from
the quantum computations. For example, we can observe
the wave-lengths (or spectrum) of the photons emitted by
that physical object in the state-change. Note, that during
an observation we are not measuring the multiplicity, the
timing, or any pattern of the change, just the set of differ-
ences of the states, modulo m. Consequently, observing
any PMC returns a subset of set {0,1,...,m — 1}, that
is, for constant m we get information, encodeable with
exactly m bits.

V. HYPERDENSE CODING

Let hi,ho,...,h, be n bits. Let pi,p2,...,p, be
a proper (n,6-PMC. Now define x; = h;p;, for i =
1,2,...,n, and let * = (x1,x2,...,2,). Clearly, the
x;’s are also PMC’s. Now, let us use matrices B and
C from Theorem 7. Let 2 = xB be a vector, and each
of the ¢t = n°®) coordinates of it is a PMC. Note, that
observing any coordinate of z yields only O(1) bits of
information, O(n°(")) in total. However, if we do not
observe the coordinates of z, but instead of that we apply
the linear transform C7 to it, then we would get back
the 1-a-strong representation of polynomials x; in each
coordinate of 2CT = 2BCT in case of variables as z's,
that is: o} = x; + 3¢;(z) + 2h;(x). But now we have
PMC’s instead of linear functions.

What happens if we observe x}? Clearly, for m = 6,
hi=1 < 5¢€ O(z}),

since in case of h; = 0 every step-value is a multiple of
2 or 3. That means that by observing the n PMC’s in the
coordinates of 2CT = xBCT, we get back the n bits of
hi,hay ..., hy.

Note, that the ¢ coordinates of z also contained the
information on the n input-bits, but with observations we
were not able to recover it. We call z the hyperdense
coding of bits hq, ho,...,h,. Consequently, we have
proved (again stating for general m):

Theorem 11: For any non-prime-power positive integer
m, and positive integer n, there exist effectively com-
putable constant n X ¢ matrices B and C' over Z,,, with
t = n°M), such that for any bit-sequence hi, ho, ..., hy,
can be encoded into n m-PMC’s = (x1,22,...,Zn),
and these m-PMC’s can be linearly transformed into ¢
m-PMC’s z = B, and these PMC’s can be linearly
transformed to n PMC’s 2/ = zCT = zBCT, such that
the observation of the PMC’s in the coordinates of '
yields the original values of hi, ho, ..., hy.

a

Note, that in a completely different quantum-mechanical
model, Bennett and Wiesner [6], using Einstein-Podolski-
Rosen entangled pairs, showed that n classic bits can be
encoded by [n/2] quantum bits. They called their result
superdense coding. Since our method yields significantly
more dense coding (although in a different model), that is
the reason of calling it “hyperdense coding”.

VI. MATRIX COMPRESSION

Definition 12: Let X = {z;;} be an n x n matrix with
one-variable homogeneous linear functions (that is, x’, js)
as entries. Then Y = {y;;} is a 1-a-strong representation
of the matrix X modulo m if for 1 < 7,57 < n, the
polynomial y;; of n? variables {z,,} is a 1-a-strong
representation of polynomial x;; modulo m.

If we plug in column-vectors instead of just variables
in the homogeneous linear forms of Theorem 7, then
we will get linear combinations of the column-vectors.
Consequently, we proved the following implication of
Theorem 6:

Theorem 13: For any non-prime-power positive integer
m, and positive integer n, there exist effectively com-
putable constant n x t matrices B and C, such that for
any n x n matrix X = {z;;}, XBCT is a l-a-strong
representation of matrix X modulo m, where t = no@),

The dimension-defying implication of Theorem 13 is
that X is an n X n matrix, XB is an n X no®) matrix,
and X BCT is again an n x n matrix.

Transposing the matrices in Theorem 13, we get:

Corollary 14: With the notations of Theorem 13,
CBT X is a 1-a-strong representation of matrix X modulo
m, where t = n°),

Our main result in this section is the following impli-
cation of Corollary 14 and Theorem 13:

Theorem 15: For any non-prime-power m > 1, there
exist effectively computable constant n x ¢ matrices B
and C, such that for any matrix X = {z,;}, BTXBisa
t x t matrix, where ¢ = n°®), and matrix CBT XBCT is
a l-a-strong representation of matrix X modulo m.

The dimension-defying implication of Theorem 15 is
that from the n x n matrix X with simple linear transfor-
mations we make the tiny n°") x n°") matrix BT X B,
and from this, again with simple linear transformations,
n x n matrix CBTXBCT, where it is a 1-a-strong
representation of matrix X modulo m.

Similarly as in Section V, where we changed our result
from linear functions to numbers with using PMC’s, now
we repeat the same method in the following Theorem:

Theorem 16: For any non-prime-power m > 1, and for
any positive integer n, there exist effectively computable
constant n x ¢t matrices B and C, such that any H = {h;;}
a 0-1 n x n» matrix can be encoded into an 7 X n matrix
X = {z;;} with n? PMC’s as entries, applying two linear
transforms to this matrix we get an ¢ x ¢ matrix BT X B
which contains ¢2 m-PMC’s, and applying two further
linear transforms, we get the n X m matrix CBTXBCT,
with n2 PMC’s as entries, whose observation returns the
original 0-1 values of the matrix H.

Proof: Let pi1,p12,--.,pnn be a proper (n? m)-
PMC, and let us define the z;; = h;jp;;. Clearly, the
entries of CBT XBCT are 1-a-strong representations of
z;;8, so by observing its (i,) entry, z;; the following
holds:

hij=1 <= m—1¢€ O(z;).

VII. MATRIX MULTIPLICATION

The matrix multiplication is a basic operation in math-
ematics in applications in almost every branch of math-
ematics itself, and also in the science and engineering
in general. An important problem is finding algorithms
for fast matrix multiplication. The natural algorithm for
computing the product of two n x m matrices uses n3
multiplications. The first, surprising algorithm for fast
matrix multiplication was the recursive method of Strassen
[7], with O(n?®!) multiplications. After a long line of
results, the best known algorithm today was given by
Coppersmith and Winograd [8], requiring only O(n2-376)
multiplications. Some of these methods can be applied
successfully in practice for the multiplication of large

matrices [9]. (For the introduction in algebraic complexity
see the book by Biirgisser, Clausen and Shokrollahi [10]).

The best lower bounds for the number of needed mul-
tiplications are between 2.5n% and 3n2, depending on the
underlying fields (see [11], [12], [13]). A result of Raz
[14] gives an 2(n?logn) lower bound for the number of
multiplications, if only bounded scalar multipliers can be
used in the algorithm.

In [5] we gave an algorithm with n?*°(1) multiplications
for computing the 1-a-strong representation of the ma-
trix product modulo non-prime power composite numbers
(e.g., 6). The algorithm was an application of a method
of computing a representation of the dot-product of two
length-n vectors with only n°(*) multiplications.

In the present work, we significantly improve the results
of [5], we give an algorithm for computing the 1-a-strong
representation of the product of two n X n matrices with
only n°(") multiplications.

Definition 17: Let X = {z;;} and Y = {y;;} be two
n X m matrices with 2n2-variable homogeneous linear
functions (that is, x};s and y;;s as entries). We say that
matrix V' = {v;;} is a l-a-strong representation of the
product-matrix XY, if for 1 < 4,7 < n, v, as a
2n2-variable polynomial, is a 1-a-strong representation of
polynomial Y}’ | @;kyk; modulo m.

We need to define a sort of generalization of the matrix-
product:

Definition 18: f : R?™ — R is a homogeneous bilinear
function over ring R if

Z Qi T3Y4

1<i,j<n

f(‘rla'rQa"'axnaylayQa"'ayn):

for some a;; € R. Let U = {u;;} be an u X n matrix over
ring R, and let V' = {wvge} be an n x v matrix over R.
Then U(f)V denotes the u x v matrix over R with entries
w;¢, Where

wie = f(Wi1, Wiz, - - - Uin, V14, V205 - - -5 Une)-

Note, that if f is the dot-product, then U(f)V is just
the simple matrix-product.

First we need a simple lemma, stating that the associa-
tivity of the matrix multiplication is satisfied also for the
“strange” matrix-multiplication defined in Definition 18:

Lemma 19: Let

f($15x27"'axnaylay%"'ayn): Z QAijTiYj
1<i,j<n
and let
g(xla'rQa"'7'I’Uaylay27"'ay’0): Z bl]'r’byj

1<i,j<v

be homogeneous bilinear functions over the ring R. Let
U = {u;;} be an v x n matrix, and let V = {uvg}

be an n x v matrix, and W = {w;;} be a v X w
matrix over IR, where u,n,w are positive integers. Then
UHV) (W =U(f)(V(g)W), that is, the “strange”
matrix-multiplication, given in Definition 18, is associa-
tive.

Proof 1: The proof is obvious from the homogeneous bi-
linearity of f and g.

Proof 2: We also give a more detailed proof for the lemma.
The entry of row ¢ and column k of matrix U(f)V can

be written as
§ Azt Uiz Vtk-
z,t

Consequently, the entry in row ¢ and column 7r of
UNHV)gW is

E bre < E aztuizvtk> Wer.
k.l z,t

On the other hand, entry (¢,7) in V(g)W is
Z breverwer,
kL
and entry (¢,7) in U(f)(V (g)W) is

E aztuizg breverwer,
z,t k.6

and this proves our statement.O]

Now we are in the position of stating and proving our
main theorem for matrix multiplications:

Theorem 20: Let X and Y two n X n matrices, and let
m > 1 be a non-prime-power integer. Then the 1-a-strong
representation of the matrix-product XY can be computed
with t3 = n°() non-scalar multiplications.

Proof: We use Theorem 13 and Corollary 14. Let us
consider ¢ xn matrix BT X and ¢ xn matrix Y B; these ma-
trices can be computed without any multiplications from
X and Y (we do not count multiplications by constants).
Let h(z,y) be the homogeneous bi-linear function (4).
Then BT X (h)Y B can be computed with 7°(Y) multipli-
cations (Note, that because of Lemma 19, the associa-
tivity holds). Now compute matrix C BT X(f)Y BCT =
(CBTX)(f)(Y BCT) without any further (non-constant)
multiplication. By Theorem 13 and Corollary 14, CBT X
and Y BCT is a 1-a-strong representations of X and Y
respectively, and they are the linear combinations of the
rows of X and columns of Y, respectively. Consequently,
using Theorem 6, CBT X (f)Y BCT is a 1-a-strong rep-
resentation of XY []

VIII. OPEN PROBLEMS

It is a great challenge to prove or disprove the com-
putability of the matrix product with only n2+t°(!) multi-
plication. We pose here the following problem:

By using our computation of the 1-a-strong representation
of the matrix product upto O(n?) times (even for different
matrices), compute the (exact, not a representation) matrix
product of two n. X n matrices.

Solution for this open problem would yield a matrix-
multiplication algorithm with only O(n?t°()) multiplica-
tions.

It is also a challenge to give a non-trivial lower bound
to the number ¢ in Theorem 5.

Acknowledgement. The author acknowledges the partial
support of OTKA grant NK67867.

Note. A Maple(tm) worksheet with numerical examples of
matrices B and C' can be downloaded from the address:
http://www.cs.elte.hu/~grolmusz/supporting. mws

REFERENCES

[1] D. A. M. Barrington, R. Beigel, and S. Rudich, “Representing
Boolean functions as polynomials modulo composite numbers,”
Comput. Complexity, vol. 4, pp. 367-382, 1994, appeared also in
Proc. 24th Ann. ACM Symp. Theor. Comput., 1992.

[2] V. Grolmusz, “On set systems with restricted intersections modulo
a composite number,” in Lecture Notes in Computer Science
Vol. 1276, August 1997, pp. 82-90, journal version to appear in
Combinatorica.

[3] ——, “Superpolynomial size set-systems with restricted intersec-
tions mod 6 and explicit Ramsey graphs,” Combinatorica, vol. 20,
pp. 73-88, 2000.

[4] ——, “Computing elementary symmetric polynomials with a sub-
polynomial number of multiplications,” SIAM Journal on Comput-
ing, vol. 32, no. 6, pp. 1475-1487, 2003.

, “Near quadratic matrix multiplication modulo composites,”
ECCC, Tech. Rep. TR03-001, 2003, http://eccc.hpi-web.de/eccc-
reports/2003/TR03-001/index.htmI#CO1.

[6] C. Bennett and S. Wiesner, “Communication via one- and two
particle operators on Einstein-Podolski-Rosen states,” Phys. Rev.
Lett., vol. 69, pp. 2881-2884, 1992.

[7]1 V. Strassen, “Gaussian elimination is not optimal,” Numerische
Mathematik, vol. 13, pp. 354-356, 1969.

[8] D. Coppersmith and S. Winograd, “Matrix multiplication via arith-
metic progressions,” J. Symbolic Comput., vol. 9, no. 3, pp. 251-
280, 1990.

[9] D. H. Bailey, “Extra high speed matrix multiplication on the Cray-
2 SIAM J. Sci. Statist. Comput., vol. 9, no. 3, pp. 603-607, 1988.

[10] P. Biirgisser, M. Clausen, and M. Shokrollahi, Algebraic Complexity
Theory. Springer, 1997.

[117 M. Bliser, “A %nz-lower bound for the rank of n X m-matrix
multiplication over arbitrary fields,” in 40th Annual Symposium
on Foundations of Computer Science (New York, 1999). 1EEE
Computer Soc., Los Alamitos, CA, 1999, pp. 45-50.

[12] N. H. Bshouty, “A lower bound for matrix multiplication,” SIAM
J. Comput., vol. 18, no. 4, pp. 759-765, 1989.

[13] A. Shpilka, “Lower bounds for matrix product,” in IEEE
Symposium on Foundations of Computer Science, 2001, pp.
358-367. [Online]. Available: citeseer.nj.nec.com/482013.html

[14] R. Raz, “On the complexity of matrix product,” in Proceedings of
the thirty-fourth annual ACM symposium on Theory of computing.
ACM Press, 2002.

(5]

