On m-factorizations of complete multigraphs and finite projective spaces

The complete multigraph λK_v has v vertices and λ edges joining each pair of vertices. An *m*-factor of the complete multigraph λK_v is a set of pairwise vertexdisjoint *m*-regular subgraphs, such that these subgraphs induce a partition of the vertices. An *m*-factorization of λK_v is a set of pairwise edge-disjoint *m*-factors such that these *m*-factors induce a partition of the edges. If the *m*-factors are pairwise distinct, then it is called *simple*. Furthermore, an *m*-factorization of λK_v is decomposable if there exist positive integers λ_1 and λ_2 such that $\lambda_1 + \lambda_2 = \lambda$ and λK_v is the union of the *m*-factorizations $\lambda_1 K_v$ and $\lambda_2 K_v$, otherwise it is called *indecomposable*.

In this talk we will discuss simple and indecomposable *m*-factorizations of λK_v related to finite projective spaces for different values of m, λ and v.