A Collection of
MTA–ELTE GAC manuscripts

György Kiss, Nicola Pace, Angelo Sonnino

ONE–FACTORIZATIONS OF THE COMPLETE GRAPH K_{p+1}
ARISING FROM PARABOLAS

2020

MTA–ELTE Geometric and Algebraic
Combinatorics Research Group

Hungarian Academy of Sciences
Eötvös University, Budapest

MANUSCRIPTS
One-factorizations of the complete graph K_{p+1}
arising from parabolas

György Kiss* Nicola Pace† Angelo Sonnino‡
18th March 2020

Abstract

There are three types of affine regular polygons in AG(2, q): ellipse, hyperbola and parabola. The first two cases have been investigated in previous papers. In this note, a particular class of geometric one-factorizations of the complete graph K_n arising from parabolas is constructed and described in full detail. With the support of computer aided investigation, it is also conjectured that up to isomorphisms this is the only one-factorization where each one-factor is either represented by a line or a parabola.

Keywords: complete graph, one-factorization, parabola, finite plane.
Mathematics Subject Classifications: 05C70, 51E21, 05B25

1 Introduction

For a positive even integer n, a one-factorization of the complete graph K_n is a partition of the edge set into $n - 1$ one-factors—each consisting of $\frac{n}{2}$ edges

*György Kiss: kissgy@cs.elte.hu
Department of Geometry and MTA-ELTE Geometric and Algebraic Combinatorics Research Group - Eötvös Loránd University - Pázmány s. 1/c, 1117 Budapest (Hungary), and FAMNIT - University of Primorska - Glagoljaška 8 - 6000 Koper (Slovenia)
†Nicola Pace: nicolaonline@libero.it
ITK Engineering GmbH, Herriotstr. 4, 60528 Frankfurt am Main (Germany).
‡Angelo Sonnino: angelo.sonnino@unibas.it
Dipartimento di Matematica, Informatica ed Economia - Università degli Studi della Basilicata - Viale dell’Ateneo Lucano 10 - 85100 Potenza (Italy).
partitioning the vertex set.

One-factorizations of complete graphs play a crucial role in many practical applications, like for instance scheduling tournaments, where a round robin tournament is to be played in the minimum number of sessions. Besides applications, one-factorizations have strong connections to Design Theory; see for instance [13].

Our approach to the problem of constructing one-factorizations of complete graphs is essentially geometric, as in [3, 6, 9, 10], and is based on techniques that have previously been used to find one-factorizations of multigraphs; see for instance [2, 4, 7, 11].

Basically, there are three types of affine regular polygons in the finite affine plane AG(2, q). One-factorizations arising from ellipses and hyperbolas have already been addressed in [6, 9]. In this paper the remaining case, the parabola, is investigated.

Our main result is the construction of a parabolic one-factorization—that is, a one-factorization where all one-factors except one are represented by parabolas, and the remaining one is represented by a line—for every complete graph K_{p+1} with p an odd prime. We may also provide a classification of parabolic one-factorizations.

Our notation is standard. For general information about one-factorizations of complete graphs see for instance [8, 12, 13].

2 Preliminaries

Henceforth we assume that $p \geq 3$ is a prime number. We fix a projective frame in PG$(2, p)$ with homogeneous coordinates $(X_0: X_1: X_2)$, and consider PG$(2, p)$ as AG$(2, p) \cup \ell_{\infty}$ where ℓ_{∞} has equation $X_0 = 0$. As usual, the points of AG$(2, p)$ are written as (X, Y) with $X = \frac{X_1}{X_0}$ and $Y = \frac{X_2}{X_0}$.

In AG$(2, p)$, let \mathcal{P}_a be the parabola with affine equation $Y = X^2 + a$, where a varies in \mathbb{Z}_p, and $V_\infty = (0:0:1)$ the point at infinity of the line $X_1 = 0$. Note that, in the projective closure of AG$(2, p)$, any two parabolas \mathcal{P}_a and \mathcal{P}_b, with $a \neq b$, meet at the point V_∞ only.

Let $V_i = (i, i^2)$ denote the points on \mathcal{P}_0 for $i = 0, 1, \ldots, p - 1$. For $k = 1, 2, \ldots, \frac{p-1}{2}$, let P^k_i denote the pole of the line V_iV_{i+k} with respect to \mathcal{P}_0. The equation of the tangent line t_i to \mathcal{P}_0 at V_i is

$$t_i : Y = 2iX - i^2.$$
hence the coordinates of the point $P^k_i = t_i \cap t_{i+k}$ are

$$P^k_i = \left(i + \frac{k}{2}, t^2 + ik \right).$$

see Figure 1. Further, let P^∞_i denote the point at infinity of the line t_i, that is, $P^\infty_i = (0:1:2i)$.

Lemma 2.1. For a fixed k, the points $P^k_0, P^k_1, \ldots, P^k_{p-1}$ are on the parabola $P_{\frac{k^2}{4}}$.

Proof. The claim follows from the equality

$$i^2 + ik = \left(i + \frac{k}{2} \right)^2 - \frac{k^2}{4}.$$

The vertices of the complete graph K_{p+1} correspond to the points of $P_0 \cup \{V_\infty\}$, while the edges of K_{p+1} correspond to the points of type P^k_i, with $k = 1, 2, \ldots, \frac{p-1}{2}, \infty$. Thus the set of edges of K_{p+1} corresponds to the set of points

$$\mathcal{E} = \left(\bigcup_{k=1}^{\frac{p-1}{2}} P_{\frac{k^2}{4}} \right) \cup \left(\ell_\infty \setminus \{V_\infty\} \right).$$

These points are called external points with respect to P_0.

In this setting, a one-factor of K_{p+1} is a set consisting of $\frac{p+1}{2}$ points of type P^k_i, for $i \in \{0, 1, \ldots, p-1\}$ and $k \in \{1, 2, \ldots, \frac{p-1}{2}\} \cup \{\infty\}$, satisfying the tangent property, that is, no tangent to P_0 meets the set in more than one point; see [6]. Then, a one-factorization of K_{p+1} is just a partition of all the points of type P^k_i into p one-factors.

3 Results

Remark that a parabola of type P_a cannot contain any point of type P^∞_j, therefore a subset of its points satisfying the tangent property consists of at most $\frac{p-1}{2}$ points. If the line ℓ is not a tangent to P_0, then ℓ is called a secant if $|\ell \cap P_0| = 2$ and ℓ is called an external line if $|\ell \cap P_0| = 0$. It is well known (see e.g. [5, Lemma 6.14]) that a secant contains $\frac{p-1}{2}$ points of \mathcal{E} and an external line contains $\frac{p+1}{2}$ points of \mathcal{E}. These motivate the following definitions.
Definition 3.1. A one-factor represented by a parabola \mathcal{P}_a is a set of $\frac{p-1}{2}$ points of type P_i^k on \mathcal{P}_a, together with a suitable point at infinity. A one-factor so defined is referred to as a parabolic one-factor.

Definition 3.2. A one-factor represented by a secant line ℓ of \mathcal{P}_0 is a set consisting of $\frac{p-1}{2}$ points of \mathcal{E} on ℓ, plus the pole of ℓ with respect to \mathcal{P}_0.

A one-factor represented by an external line ℓ of \mathcal{P}_0 is a set consisting of $\frac{p+1}{2}$ points of \mathcal{E} on ℓ.

Definition 3.3. A one-factorization of K_{p+1} is called a parabolic one-factorization if $p - 1$ of its one-factors are represented by parabolas and one of its one-factors is represented by a line.

Theorem 3.4. Let p be an odd prime. Then the complete graph K_{p+1} has a parabolic one-factorization.

Proof. The proof is constructive. Let

$$F_0 = \left\{ P_{-\frac{1}{2}}^k : k = 1, 2, \ldots, \frac{p-1}{2} \right\} \cup \{ P_0^\infty \}.$$

The set F_0 is a one-factor represented by the secant line of \mathcal{P}_0 of equation $X = 0$, and P_0^∞ is its pole with respect to \mathcal{P}_0.

\[\]
For $k = 1, 2, \ldots, \frac{p-1}{2}$, define the following sets of points:

\[G_k = \left\{ P_{\frac{k}{2} + 2jk} : j = 0, 1, \ldots, \frac{p-3}{2} \right\} \cup \left\{ P_{\frac{-3}{2}} \right\}, \]

\[H_k = \left\{ P_{\frac{k}{2} + (2j+1)k} : j = 0, 1, \ldots, \frac{p-3}{2} \right\} \cup \left\{ P_{\frac{3}{2}} \right\}. \]

By Lemma 2.1, $G_k \setminus \left\{ P_{\frac{-3}{2}} \right\}$ and $H_k \setminus \left\{ P_{\frac{3}{2}} \right\}$ are disjoint subsets of the parabola $\mathcal{P}_{-\frac{3}{2}}$. Both G_k and H_k are one-factors represented by the parabola $\mathcal{P}_{-\frac{3}{2}}$ because every tangent to \mathcal{P}_0 intersects $\mathcal{P}_{-\frac{3}{2}}$ in two points, P_i^k and P_i^{k+1}. One of these points falls in G_k, the other one in H_k, and the claim follows.

Parabolic one-factorisations are completely characterised in the projective closure of $AG(2, p)$.

Theorem 3.5. Let $p > 5$ be an odd prime and \mathcal{F} be a parabolic one-factorization of the complete graph K_{p+1}. Then \mathcal{F} is isomorphic to the one-factorization constructed in Theorem 3.4.

Proof. Let ℓ be the line representing the unique linear one-factor of \mathcal{F} and L denote the pole of ℓ with respect to \mathcal{P}_0. First, we show that ℓ contains the point V_∞. By definition, $\ell \cup \{L\}$ must contain one affine point from each parabola of type \mathcal{P}_a. Hence ℓ must be a tangent to at least $\frac{p-1}{2} - 1 > 1$ parabolas of type \mathcal{P}_a. Suppose that the affine equation of ℓ is $Y = mX + b$. Then ℓ contains exactly one point of \mathcal{P}_a if and only if the discriminant of the quadratic equation $X^2 - mX + a - b = 0$ is zero, that is,

\[a = \frac{m^2 + 4b}{4}. \tag{1} \]

From (1), the line ℓ would be a tangent to at most one parabola of type \mathcal{P}_a, hence it must be assumed that the affine equation of ℓ is of type $X = c$.

Now consider the linear transformation $\varphi \in \text{PGL}(3, p)$ associated to the matrix

\[
\begin{pmatrix}
1 & -c & c^2 \\
0 & 1 & -2c \\
0 & 0 & 1
\end{pmatrix}.
\]

5
Then \((1 : c : c^2)^\varphi = (1 : 0 : 0)\) and \((0 : 0 : 1)^\varphi = (0 : 0 : 1)\). Hence, the unique linear one-factor of \(\mathcal{F}^\varphi\) corresponds, by projectivity, to the line \(X = 0\), that is, the set of points

\[
\left\{ P_{\frac{k}{2}} : k = 1, 2, \ldots, \frac{p-1}{2} \right\} \cup \{ P_0^\infty \}.
\]

Further, the linear transformation \(\varphi\) fixes every parabola \(\mathcal{P}_a\) setwise since \((1 : t : t^2 + a)^\varphi = (1 : t - c : (t - c)^2 + a)\).

For a fixed \(k \in \{1, 2, \ldots, \frac{p-1}{2}\}\) let \(G_k\) and \(H_k\) denote the two one-factors of \(\mathcal{F}^\varphi\) which are represented by the parabola \(\mathcal{P}_{\frac{k}{2}}\). Consider the point \(P_k^k\).

We may assume without loss of generality that it belongs to \(G_k\). Then, by the tangent property, \(P_k^k\) must belong to \(H_k\). For \(j = 1, \ldots, \frac{p-3}{2}\), the points \(P_{\frac{k}{2} + 2jk}^k\) must belong to \(G_k\), while the points \(P_{\frac{k}{2} + (2j+1)k}^k\) must belong to \(H_k\). Furthermore, \(P_\infty^k\) is in \(G_k\) and \(P_\infty^k\) is in \(H_k\). Thus, \(\mathcal{F}^\varphi\) is the one-factorization constructed in Theorem 3.4 and hence \(\mathcal{F}\) is isomorphic to \(\mathcal{F}^\varphi\). \(\square\)

We conclude with a conjecture that is supported by our computer aided investigations. With the aid of Magma \([1]\) we verified that the conjecture holds true for \(p \leq 17\).

Conjecture 3.6. Let \(p > 7\) be an odd prime, \(\mathcal{F}\) be a one-factorization of the complete graph \(K_{p+1}\) such that each one-factor of \(\mathcal{F}\) is either represented by a line or a parabola. Then \(\mathcal{F}\) is either a parabolic one-factorization or each one-factor of \(\mathcal{F}\) is represented by a line.

4 Examples for small \(p\)

The examples described in this section serve to illustrate the results from the previous sections.

4.1 \(p = 7\)

Let us consider the parabola \(\mathcal{P}_0\) of projective equation \(X_0X_2 = X_1^2\) in \(\text{PG}(2, 7)\). The construction in Theorem 3.4 provides the following partition
of the points of type P^k_i:

$$F_0 = \{ P^4_3(1:0:5), P^2_6(1:0:6), P^5_2(1:0:3), P^\infty_6(0:1:0) \},$$
$$F_1 = \{ P^4_4(1:1:6), P^4_6(1:3:0), P^1_4(1:5:2), P^\infty_3(0:1:6) \},$$
$$F'_1 = \{ P^5_3(1:2:2), P^3_6(1:4:0), P^2_2(1:6:6), P^\infty_4(0:1:1) \},$$
$$F_2 = \{ P^5_1(1:2:3), P^2_5(1:6:0), P^2_2(1:3:1), P^\infty_6(0:1:5) \},$$
$$F'_2 = \{ P^5_5(1:4:1), P^3_6(1:1:0), P^2_2(1:5:3), P^\infty_4(0:1:2) \},$$
$$F_3 = \{ P^3_3(1:3:5), P^3_4(1:2:0), P^3_3(1:1:4), P^2_2(0:1:4) \},$$
$$F'_3 = \{ P^3_4(1:6:4), P^2_6(1:5:0), P^2_6(1:4:5), P^\infty_4(0:1:3) \}.$$

This partition is a parabolic one-factorization, where the one-factors are as follows:

- F_0 is represented by the secant line $X_1 = 0$,
- F_1, F'_1 are represented by the parabola $P_5 : X_0X_2 = X_1^2 + 5X_0^2$,
- F_2, F'_2 are represented by the parabola $P_6 : X_0X_2 = X_1^2 + 6X_0^2$,
- F_3, F'_3 are represented by the parabola $P_3 : X_0X_2 = X_1^2 + 3X_0^2$.

4.2 $p = 11$

Let us consider the parabola P_9 of projective equation $X_0X_2 = X_1^2$ in PG(2, 11). The construction in Theorem 3.4 provides the following partition of the points of type P^k_i:

$$F_0 = \{ P^2_{10}(1:0:10), P^4_3(1:0:8), P^5_3(1:0:2), P^2_4(1:0:7), P^3_4(1:0:6), P^\infty_6(0:1:0) \},$$
$$F_1 = \{ P^2_3(1:1:9), P^4_3(1:3:6), P^3_{10}(1:5:0), P^4_1(1:7:2), P^3_4(1:9:1), P^\infty_7(0:1:10) \},$$
$$F'_1 = \{ P^2_4(1:2:1), P^4_9(1:4:2), P^4_6(1:6:0), P^3_2(1:8:6), P^4_4(1:10:9), P^\infty_6(0:1:1) \},$$
$$F_2 = \{ P^2_2(1:2:3), P^2_3(1:6:2), P^2_7(1:10:0), P^2_2(1:3:8), P^2_6(1:7:4), P^2_9(0:1:9) \},$$
$$F'_2 = \{ P^2_5(1:4:4), P^2_7(1:8:8), P^2_8(1:1:0), P^3_4(1:5:2), P^2_3(1:9:3), P^\infty_4(0:1:2) \},$$
$$F_3 = \{ P^3_9(1:3:4), P^3_9(1:9:10), P^3_2(1:4:0), P^3_3(1:10:7), P^3_8(1:5:9), P^3_5(0:1:8) \},$$
$$F'_3 = \{ P^3_{10}(1:6:9), P^3_5(1:1:7), P^3_6(1:7:0), P^3_6(1:2:10), P^3_4(1:8:4), P^3_7(0:1:3) \},$$
$$F_4 = \{ P^2_4(1:4:1), P^2_{10}(1:1:8), P^2_4(1:9:0), P^2_4(1:6:10), P^2_4(1:3:5), P^2_5(0:1:7) \},$$
$$F'_4 = \{ P^2_6(1:8:5), P^2_3(1:5:10), P^2_5(1:2:0), P^2_8(1:10:8), P^2_6(1:7:1), P^2_5(0:1:4) \},$$
$$F_5 = \{ P^3_3(1:5:5), P^2_2(1:4:7), P^2_9(1:3:0), P^2_3(1:2:6), P^2_4(1:1:3), P^2_3(0:1:6) \},$$
$$F'_5 = \{ P^2_5(1:10:3), P^3_3(1:9:6), P^2_6(1:8:0), P^2_{10}(1:7:7), P^2_9(1:6:5), P^2_5(0:1:5) \}.$$
This partition is a parabolic one-factorization, where the one-factors are as follows:

- F_0 is represented by the secant line $X_1 = 0$,
- F_1, F'_1 are represented by the parabola $P_8 : X_0 X_2 = X_1^2 + 8X_0^2$,
- F_2, F'_2 are represented by the parabola $P_{10} : X_0 X_2 = X_1^2 + 10X_0^2$,
- F_3, F'_3 are represented by the parabola $P_6 : X_0 X_2 = X_1^2 + 6X_0^2$,
- F_4, F'_4 are represented by the parabola $P_7 : X_0 X_2 = X_1^2 + 7X_0^2$,
- F_5, F'_5 are represented by the parabola $P_2 : X_0 X_2 = X_1^2 + 2X_0^2$.

Acknowledgements

This research was carried out within the activities of the GNSAGA - Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni of the Italian INdAM.

György Kiss was supported by the Hungarian National Research, Development and Innovation Office OTKA grant no. SNN 132625, and by the Slovenian Research Agency (research project J1-9110).

References

