A Collection of
MTA–ELTE GAC manuscripts

Bence Csajbók, Tamás Héger, György Kiss

SEMIARCS WITH A LONG SECANT IN PG(2, q)

2015

MTA–ELTE Geometric and Algebraic Combinatorics Research Group

Hungarian Academy of Sciences
Eötvös University, Budapest

MANUSCRIPTS
Semiarcs with a long secant in PG(2, q)

Bence Csajbók* Tamás Héger† and György Kiss‡

Abstract

A t-semiarc is a pointset S_t with the property that the number of tangent lines to S_t at each of its points is t. We show that if a small t-semiarc S_t in PG(2, q) has a large collinear subset K, then the tangents to S_t at the points of K can be blocked by t points not in K. In fact, we give a more general result for small pointsets with less uniform tangent distribution. We show that in PG(2, q) small t-semiarcs are related to certain small blocking sets and give some characterization theorems for small semiarcs with large collinear subsets.

AMS subject classification: 51E20, 51E21

Keywords: finite plane, semiarc, semioval, blocking set, Szőnyi–Weiner Lemma

1 Introduction

Ovals, k-arcs and semiovals of finite projective planes are interesting geometric structures which also have applications to coding theory and cryptography. For details we refer the reader to [3, 14, 22, 24, 27].

Semiarcs are natural generalizations of arcs. Throughout the paper Π_q denotes an arbitrary projective plane of order q. By PG(2, q) and AG(2, q) we denote the desarguesian projective and affine planes. A non-empty pointset $S_t \subset \Pi_q$ is called a t-semiarc if for every point $P \in S_t$ there exist exactly $t \geq 1$ lines $\ell_1, \ell_2, \ldots, \ell_t$ such that $S_t \cap \ell_i = \{P\}$ for $i = 1, 2, \ldots, t$. These lines are called the tangents to S_t at P. If a line ℓ meets S_t in k points, then ℓ is called a k-secant of S_t; a 0-secant is also called a skew line to S_t. We say that a k-secant is long, if $q - k$ is a small number (which will be given a precise meaning later).

The classical examples of t-semiarcs are the k-arcs (with $t = q + 2 - k$), subplanes (with $t = q - m$, where m is the order of the subplane) and semiovals (that is semiarcs with $t = 1$, e.g. ovals or unitals). Note that if we allowed $t = 0$, a 0-semiarc would be a set without tangents (a so-called untouchable set); see [9, 11, 38].

The complete classification of semiarcs is hopeless. The aim of this paper is to investigate and characterize semiarcs having some additional properties. In Section 2 we consider a very special class, namely t-semiarcs of size $k + q - t$ having a k-secant. These pointsets are closely related to the widely studied structures defining few directions [1, 6, 35]. In Section 3 we prove that in PG(2, q) if a small t-semiarc has a large collinear subset K, then the tangent lines at the points of K belong to t pencils whose carriers are not in K. This result generalizes the main result in Kiss [26]. Small semiovals with large collinear subsets were studied in arbitrary projective planes as well, see Bartoli [2] and Dover [18]. The essential part of our proof is algebraic, it is based on an application of the Rédei polynomial and the Szőnyi–Weiner Lemma. In fact, the main result of this section is more general as it is valid for small pointsets with less uniform tangent distribution as well. In Section 4 we associate to each t-semiarc S_t a blocking set. If S_t is small and has a long secant, then the associated blocking set is small. Applying theorems about the structure of small blocking sets we prove some characterization theorems for semiarcs.

*Author was supported by the Hungarian National Foundation for Scientific Research (OTKA), Grant No. K 81310.
† Author was supported by ERC Grant No. 227701 DISCRETECONT.
‡ Author was supported by the Slovenian–Hungarian Intergovernmental Scientific and Technological Cooperation Project, Grant No. TÉT 10-1-2011-0606.
When \(t \geq q - 2 \), then it is easy to characterize \(t \)-semiarcs. If \(t = q + 1 \), \(q \) or \(q - 1 \), then \(S_t \) is a single point, a subset of a line of size at least two, or three non-collinear points, respectively; see [16, Proposition 2.1]. Hence, if no other bound is specified, we usually assume that \(t \leq q - 2 \). If \(t = q - 2 \), then it follows from [16, Proposition 3.1] that \(S_t \) is one of the following three configurations: four points in general position, the six vertices of a complete quadrilateral, or a Fano subplane. Thus sometimes we may assume that \(t \leq q - 3 \), which we indicate individually.

Throughout the paper we use the following notation. We denote points at infinity of \(\text{PG}(2, q) \), i.e. points on the line \(t_{\infty} = \{ 0 : 0 : 1 \} \), by \((m) \) instead of the homogeneous coordinates \((1 : m : 0) \). We simply write \(Y_{\infty} \) and \(X_{\infty} \) instead of \((0 : 1 : 0) \) and \((1 : 0 : 0) \), respectively. The points of \(t_{\infty} \) are also called directions. For affine points, i.e. points of \(\text{PG}(2, q) \setminus t_{\infty} \), we use the Cartesian coordinates \((a, b) \) instead of \((a : b : 1) \).

If \(P \) and \(Q \) are distinct points in \(\Pi_q \), then \(PQ \) denotes the unique line joining them. If \(\mathcal{A} \) and \(\mathcal{B} \) are two pointsets in \(\Pi_q \), then \(\mathcal{A} \triangle \mathcal{B} \) denotes their symmetric difference, that is \((\mathcal{A} \setminus \mathcal{B}) \cup (\mathcal{B} \setminus \mathcal{A}) \).

Blocking sets play an important role in our proofs. For the sake of completeness we collect the basic definitions and some results about these objects. A blocking set \(\mathcal{B} \) in a projective or affine plane is a set of points which intersects every line. If \(\mathcal{B} \) contains a line, then it is called trivial. A point \(P \) in a blocking set \(\mathcal{B} \) is essential if \(\mathcal{B} \setminus \{ P \} \) is not a blocking set, i.e. there is a tangent line to \(\mathcal{B} \) at the point \(P \). A blocking set is said to be minimal when no proper subset of it is a blocking set or, equivalently, each of its points is essential. If \(\ell \) is a line containing at most \(q \) points of a blocking set \(\mathcal{B} \) in \(\Pi_q \), then \(|\mathcal{B}| \geq q + |\ell \cap \mathcal{B}| \). In case of equality \(\mathcal{B} \) is a blocking set of Rédei type and \(\ell \) is a Rédei line of \(\mathcal{B} \). Note that we also consider a line to be a blocking set of Rédei type. A blocking set in \(\text{PG}(2, q) \) is said to be small if its size is less than \(3(q + 1)/2 \). We close this section by collecting some results on blocking sets by Szőnyi; Polverino, Sziklai and Szőnyi; and Blokhuis, Bruen, Storme and Szőnyi.

Theorem 1.1 ([34, Remark 3.3 and Corollary 4.8]) Let \(\mathcal{B} \) be a blocking set in \(\text{PG}(2, q) \), \(q = p^h \), \(p \) prime. If \(|\mathcal{B}| \leq 2q \), then \(\mathcal{B} \) contains a unique minimal blocking set. If \(\mathcal{B} \) is a small minimal blocking set, then each line intersects \(\mathcal{B} \) in \(1 \pmod{p} \) points.

Note that a blocking set contains a unique minimal blocking set if and only if the set of its essential points is a blocking set. The next result generalizes the second part of the above theorem.

Theorem 1.2 ([31; 32, Corollary 5.1; 34]) Let \(\mathcal{B} \) be a small minimal blocking set in \(\text{PG}(2, q) \), \(q = p^h \), \(p \) prime. Then there exists a positive integer \(e \), called the exponent of \(\mathcal{B} \), such that \(e \) divides \(h \), and

\[
q + 1 + p^e \left\lfloor \frac{q/p^e + 1}{p^e + 1} \right\rfloor \leq |\mathcal{B}| \leq 1 + (p^e + 1)(q + 1) - \sqrt{D},
\]

where \(D = (1 + (p^e + 1)(q + 1)^2 - 4(p^e + 1)(q^2 + q + 1)) \).

If \(p^e \neq 4 \) and \(|\mathcal{B}| \) lies in the interval belonging to \(e \), then each line intersects \(\mathcal{B} \) in \(1 \pmod{p^e} \) points.

Theorem 1.3 ([4,10,13]) Let \(\mathcal{B} \) be a minimal blocking set in \(\text{PG}(2, q) \), \(q = p^h \), \(p \) prime. Let \(|\mathcal{B}| = q + 1 + k \), and let \(c_p = 2^{-1/3} \) for \(p = 2, 3 \) and \(c_p = 1 \) for \(p > 3 \). Then the following hold.

1. If \(h = 1 \) and \(k \leq (q + 1)/2 \), then \(\mathcal{B} \) is a line, or \(k = (q + 1)/2 \) and each point of \(\mathcal{B} \) has exactly \((q - 1)/2 \) tangent lines.
2. If \(h = 2d + 1 \) and \(k < c_p q^{2/3} \), then \(\mathcal{B} \) is a line.
3. If \(k \leq \sqrt{q} \), then \(\mathcal{B} \) is a line, or \(k = \sqrt{q} \) and \(\mathcal{B} \) is a Baer subplane (that is a subplane of order \(\sqrt{q} \)).

We remark that the third point of the above theorem holds in arbitrary finite projective planes.

2 Semiarc and the direction problem

In this section we give and characterize several examples of semiarc with a particular extremal property. We will often need the following basic observation.
Proposition 2.1 Let S_t be a t-semiarc in Π_q, and let ℓ be an arbitrary line. Then $|S_t| \geq q - t + |\ell \cap S_t|$. If equality holds, then for any line ℓ' intersecting $S_t \setminus \ell$ in at least two points we have $\ell \cap \ell' \not\in S_t$.

Proof. Let $k = |\ell \cap S_t|$. As through any point of S_t there are $q + 1 - t$ non-tangent lines to S_t, we clearly have $|S_t| \geq q + 2 - t$; thus the assertion trivially holds for $k \leq 1$. Suppose $k \geq 2$. For any point $P \in S_t \cap \ell$ there are $q + 1 - t$ non-tangent lines to S_t through P, one of which is ℓ, and each of the remaining $q - t$ non-tangent lines contains at least one point from $S_t \setminus \ell$. In case of equality we see that lines through the points of $\ell \cap S_t$, different from ℓ contain either one or zero points from $S_t \setminus \ell$.

If k is the size of the largest collinear subset of a semiarc S_t, then, by the above proposition, we may always assume that $|S_t| = k + q - t + \varepsilon$ where $\varepsilon \geq 0$. In this section we investigate the case $\varepsilon = 0$.

Definition 2.2 We call a t-semiarc S_t tight if $|S_t| = q - t + |\ell \cap S_t|$ holds for some line ℓ. Such lines are called maximal secants (of S_t). For a semiarc S_t, $\kappa(S_t)$ denotes the largest number k such that S_t admits a k-secant.

Notice that for any t-semiarc S_t, $t < q$ implies $\kappa(S_t) \leq q + 1 - t$. Csajbók investigated the case of equality.

Theorem 2.3 ([15, Theorem 4]) In $PG(2, q)$, if a t-semiarc with a $(q + 1 - t)$-secant exists, then $t \geq (q - 1)/2$.

Thus, if t is small, then $\kappa(S_t) \leq q - t$ follows, and hence a tight t-semiarc has at most $2(q - t)$ points.

Example 2.4 (V_t-configuration) Let ℓ_1 and ℓ_2 be two distinct lines in Π_q, and let $T_1 \subset \ell_1 \setminus \ell_2$, $T_2 \subset \ell_2 \setminus \ell_1$, $|T_1| = |T_2| = t$ and $1 \leq t \leq q - 2$. Then $S_t = (\ell_1 \triangle \ell_2) \setminus (T_1 \cup T_2)$ is a t-semiarc. Such semiarchs are called V_t-configurations; they are tight and have $2(q - t)$ points.

Proposition 2.5 ([16, Proposition 2.2]) Let Π_q be a projective plane of order q, and let $t \leq q - 2$. If a t-semiarc S_t in Π_q is contained in the union of two lines, then S_t is a V_t-configuration.

It is easy to give a combinatorial characterization of t-semiarchs of size $2(q - t)$ with a $(q - t)$-secant. For semiarchs, this was also done by Bartoli [2, Corollary 9].

Proposition 2.6 Let Π_q be a projective plane of order q, and let $t \leq q - 2$. If S_t is a t-semiarc of size $2(q - t)$ with a $(q - t)$-secant ℓ (that is a tight t-semiarc of size $2(q - t)$), then S_t is a V_t-configuration.

Proof. Let $U = S_t \setminus \ell$. Recall that if ℓ' is a line joining two points of U, then $\ell' \cap S_t \not\in S_t$. Now suppose to the contrary that there exist three non-collinear points in U. They determine three lines, each of which intersects ℓ in $\ell \setminus S_t$; hence at these three points of U there are at most $t - 1$ tangents to S_t, a contradiction. Thus the points of U are contained in a line ℓ' and $\ell \cap \ell' \not\in S_t$.

The following example shows the existence of tight t-semiarchs with three maximal secants for odd values of t.

Example 2.7 Let C denote the set of non-squares in the field $GF(q)$, q odd. The pointset $\{(0 : 1 : s), (s : 0 : 1), (1 : s : 0) : -s \in C\}$ is a semiarc in $PG(2, q)$ of size $3(q - 1)/2$ with three $(q - 1)/2$-secants, see Blokhuis [5]. We refer to this construction as Blokhuis' semiarc. If we delete $r < (q - 1)/2 - 2$ points from each of the $(q - 1)/2$-secants, then the remaining pointset S_t is a tight t-semiarc with three maximal secants, where $\kappa(S_t) = (q - 1)/2 - r$ and $t = 2r + 1$.

There also exist examples if t is even. To give their construction, we need some notation. A (k, n)-arc is a set of k points such that each line contains at most n of these points. A set T of $q + t$ points in Π_q for which each line meets T in 0, 2 or t points ($t \neq 0, 2$) is either an oval (for $t = 1$), or a $(q + t, t)$-arc of type $(0, 2, t)$. Korchmáros and Mazzocca [29, Proposition 2.1] proved that $(q + t, t)$-arcs of type $(0, 2, t)$ exist in Π_q only if q is even and $t \mid q$. They also provided infinite families of examples in $PG(2, q)$ whenever the field $GF(q/t)$ is a subfield of $GF(q)$. It is easy to see that through each point of T there passes
exactly one t-secant. In [21] new constructions were given by Gács and Weiner, and they proved that in PG($2,q$) the $q/t + 1$ t-secants of \mathcal{T} pass through one point, called the t-nucleus of \mathcal{T} (for $t = 1$ and arbitrary projective plane of even order, see e.g. [24, Lemma 8.6]). Recently Vandendriessche [39] found a new infinite family with $t = q/4$. Using linear sets, Van de Voorde and De Boeck have reinterpreted this family, and also described a new family with $t = q/4$ [17].

Example 2.8 Let \mathcal{T} be a $(q + \tau, \tau)$-arc of type $(0, 2, \tau)$ in Π_q. Delete $1 \leq r < \tau - 2$ points from each of the t-secants of \mathcal{T}. The remaining points form a tight t-semiarc \mathcal{S}_t with $q/t + 1$ maximal secants, $t = r q/\tau$ and $\kappa(\mathcal{S}_t) = \tau - r$.

Since $(q + q/2, q/2)$-arcs of type $(0, 2, q/2)$ exist in PG($2,q$), q even, this construction gives t-semiars for each $t \leq q - 6$, t even.

The so-called direction problem is closely related to tight semiars. We briefly collect the basic definitions and some results about this problem. Consider PG($2,q$) = AG($2,q$) \cup ℓ_∞. Let \mathcal{U} be a set of points of AG($2,q$). A point P of ℓ_∞ is called a direction determined by \mathcal{U} if there is a line through P that contains at least two points of \mathcal{U}. The set of directions determined by \mathcal{U} is denoted by $D_\mathcal{U}$. If $|\mathcal{U}| = q$, then $\mathcal{U} \cup D_\mathcal{U}$ is a blocking set of Rédéi type. If $Y_\infty \notin D_\mathcal{U}$, then \mathcal{U} can be considered as a graph of a function. Note that all these definitions make sense in non-desarguesian planes as well. Using these notions, we first give a general example of tight semiars.

Example 2.9 Let ℓ be a line of Π_q, and let \mathcal{U} be a set of $m < q$ points in the affine plane $\Pi_q \setminus \ell$. Consider directions with respect to $\ell = \ell_\infty$. Assume $|D_\mathcal{U}| < m$, and denote $q - m$ by t. Let $\overline{D} = \ell_\infty \setminus D_\mathcal{U}$ and let $\mathcal{T} \subset \overline{D}$ be a set of t points. Suppose that $\mathcal{U} \cup D_\mathcal{U}$ does not have 2-secants. Then the set $\mathcal{S}_t = \mathcal{U} \cup (\overline{D} \setminus \mathcal{T})$ is a tight t-semiarc with $\kappa(\mathcal{S}_t) = m - |D_\mathcal{U}| + 1$.

Proof. As $|\ell_\infty \cap \mathcal{S}_t| = q + 1 - |D_\mathcal{U}| - t = m - |D_\mathcal{U}| + 1 > 1$, ℓ_∞ is not tangent to \mathcal{S}_t. If $P \in \overline{D} \setminus \mathcal{T}$, then all lines through P, except ℓ_∞, intersect \mathcal{U} in either zero or one point, hence the number of tangents through P to \mathcal{S}_t is $q - |\mathcal{U}| = t$. Now let $P \in \mathcal{U}$, and consider a line ℓ through P. According to whether ℓ intersects ℓ_∞ in $D_\mathcal{U}$, $\overline{D} \setminus \mathcal{T}$ or \mathcal{T}, $|\ell \cap \mathcal{S}_t|$ is at least two, exactly two or exactly one, respectively. Thus there pass precisely $|\mathcal{T}| = t$ tangents to \mathcal{S}_t through P.

We will consider two particular examples.

Example 2.10 (altered Baer subplane) Let $\Pi_{\sqrt{q}}$ be a Baer subplane in the projective plane Π_q, $q \geq 9$, and let ℓ be an extended line of $\Pi_{\sqrt{q}}$. Let \mathcal{P} be a set of $1 \leq t \leq q - \sqrt{q} - 2$ points in $\Pi_{\sqrt{q}} \setminus \ell$ such that no line intersects \mathcal{P} in exactly $\sqrt{q} - 1$ points. For example a $(t, \sqrt{q} - 2)$-arc is a good choice for \mathcal{P}. Example 2.9 with $\mathcal{U} = \Pi_{\sqrt{q}} \setminus (\ell \cup \mathcal{P})$ gives a tight t-semiarc with $\kappa(\mathcal{S}_t) = q - \sqrt{q} - t$.

The other particular semiarc obtained from Example 2.9 is based on the following result of Blokhuis et al. [6] and Ball [1].

Theorem 2.11 ([1, 6]) Let $\mathcal{U} \subset AG(2,q)$, $q = p^h$, p prime, be a pointset of size q. Let $z = p^c$ be maximal having the property that if $P \in D_\mathcal{U}$ and ℓ is a line through P, then ℓ intersects \mathcal{U} in $0 \pmod{z}$ points. Then one of the following holds:

1. $z = 1$ and $(q + 3)/2 \leq |D_\mathcal{U}| \leq q + 1$,
2. $GF(z)$ is a subfield of $GF(q)$ and $q/z + 1 \leq |D_\mathcal{U}| \leq (q - 1)/(z - 1),$
3. $z = q$ and $|D_\mathcal{U}| = 1$.

Let \mathcal{B} be a small blocking set of Rédéi type in PG($2,q$), $q = p^h$, p prime, and let ℓ be one of its Rédéi lines. Since $|\mathcal{B}| < 3(q + 1)/2$, we have $|\ell \cap \mathcal{B}| < (q + 3)/2$. Hence the previous theorem implies that there exists an integer e such that e divides h, $1 < p^e \leq q$ holds, and each affine line intersects \mathcal{B} in $1 \pmod{p^e}$ points.
Example 2.12 (altered Rédei type blocking set) Let B be a small blocking set of Rédei type in $\text{PG}(2, q)$, $q = p^h$, p prime. Let \mathcal{P} be a set of $1 \leq t < q - |B \cap \ell| - 1$ points in $B \setminus \ell$ such that for each line ℓ' intersecting B in more than one point we have $|\ell' \cap \mathcal{P}| \neq |\ell' \cap B| - 2$. For example, if $z = p^t$ denotes the maximal number such that each line intersects B in $1 \pmod{z}$ points (cf. Theorem 2.11) and $z \geq 3$, then a $(t, z - 2)$-arc is a good choice for \mathcal{P}. Example 2.9 with $U = B \setminus (\ell \cup \mathcal{P})$ gives a tight t-semiarc with $\kappa(S_t) = 2q + 1 - |B| - t$. (Note that if B is a line, then S_t is a V_t-configuration.)

Next we show that a tight semiarc S_t in $\text{PG}(2, q)$, if t is small and $\kappa(S_t)$ is large, is an altered Rédei type blocking set. To this end, besides the results about the number of directions determined by a set of q affine points, we also need results on the extendability of a set of almost q affine points to a set of q points such that the two pointsets determine the same directions. The first such extendability theorem was proved by Blokhuis [5]; see also Szőnyi [35].

Theorem 2.13 ([5, Proposition 2; 35, Remark 7]) Let $U \subset \text{AG}(2, q)$, $q \geq 3$, be a pointset of size $q - 1$. Then there exists a unique point P such that the pointset $U \cup \{P\}$ determines the same directions as U.

Extending a result of Szőnyi [35, Theorem 4], Sziklai proved the following theorem.

Theorem 2.14 ([33, Theorem 3.1]) Let $U \subset \text{AG}(2, q)$ be a pointset of size $q - n$ where $n \leq \alpha \sqrt{q}$ for some $1/2 \leq \alpha < 1$. If $|D_U| < (q + 1)(1 - \alpha)$, then U can be extended to a set U' of size q such that U' determines the same directions as U.

We also need the following lemma.

Lemma 2.15 Let z and t be two positive integers such that $z \geq 3$ and $t \leq \sqrt{q(z - 1)/z}$. Let $U \subset \text{AG}(2, q)$ be a set of $q - t$ affine points, and let $E \subseteq F$ be two sets of directions satisfying the following properties:

1. there are at least t tangents to U with direction in F through each point of U;
2. there exists a suitable set of t affine points, \mathcal{P}, such that $U \cap \mathcal{P} = \emptyset$ and each tangent to U with direction not in E intersects $U \cup \mathcal{P}$ in $0 \pmod{z}$ points.

Then $|E| \geq t$.

Proof. If ℓ is a tangent to U that intersects $F \setminus E$, then $|\mathcal{P} \cap \ell| \equiv -1 \pmod{z}$. The maximum number of such tangent lines is $\frac{t(t - 1)}{(z - 1)(z - 2)}$. Hence at least $(q - t)t - \frac{t(t - 1)}{(z - 1)(z - 2)}$ tangents to U have direction in E. This implies

$$|E| \geq (q - t)t - \frac{t(t - 1)}{(z - 1)(z - 2)} \quad \text{thus} \quad (|E| - t)q \geq t^2 - \frac{t(t - 1)}{(z - 1)(z - 2)}.$$

If $|E| - t$ is a negative integer, then this inequality gives $q < t^2 \frac{(z - 1)(z - 2) + 1}{(z - 1)(z - 2)} \leq t^2 z/(z - 1)$, contradicting the assumption $t \leq \sqrt{q(z - 1)/z}$.

Theorem 2.16 Let S_t be a tight t-semiarc in $\text{PG}(2, q)$, $q = p^h$, p prime. Suppose that one of the following conditions hold:

- $t = 1$, $q > 4$ and $\kappa(S_1) > (q - 1)/2$, or
- $2 \leq t \leq \alpha \sqrt{q}$ and $\kappa(S_t) > \alpha(q + 1)$ for some $1/2 \leq \alpha \leq \sqrt{(p - 1)/p}$ if p is an odd prime, and $1/2 \leq \alpha \leq \sqrt{3}/2$ if $p = 2$.

Then S_t is an altered Rédei type blocking set.
Proof. Let \(k = \kappa(S_t) \) and let \(\ell \) be a \(k \)-secant of \(S_t \). Take \(\ell \) as the line at infinity and let \(U = S_t \setminus \ell \subseteq \AG(2, q) \). The directions in \(S_t \cap \ell \) are not determined by \(U \), hence \(|D_U| \leq q + 1 - k \). We can apply Theorem 2.13 when \(t = 1 \); if \(t \geq 2 \), then the conditions of Theorem 2.14 hold since \(|U| = q - t, t \leq \alpha \sqrt{q} \) and \(|D_U| < (q + 1)(1 - \alpha) \). Let \(P = \{P_1, P_2, \ldots, P_t\} \) be a set of \(t \) points such that \(U \cup P \) determines the same directions as \(U \).

First consider the case \(t \geq 2 \). We have \(|D_U| < (q + 1)/2 \), thus applying Theorem 2.11 we get that there exists an integer \(z = p^c \geq 3 \) such that each affine line with direction in \(D_U \) intersects \(U \cup \{P_t\} \) in 0 (mod \(z \)) points. We can apply Lemma 2.15 with \(F = \ell \setminus S_t \) and \(E = \ell \setminus (S_t \cup D_U) \) to obtain \(|E| \geq t \). Note that in case if \(p = 2 \) we have \(z \geq 4 \), hence \(\alpha \leq \sqrt{3}/2 \) is enough to apply Lemma 2.15. On the other hand the lines joining any point of \(E \) with any point of \(U \) are tangents to \(S_t \), thus \(|E| \leq t \). The same observation implies that each of the tangents to \(S_t \) at the points of \(U \) meets \(E \). Let \(B = U \cup \{P_t\} \cup D_U \), which is a small blocking set of Rédei type. Let \(\ell' \neq \ell \) be a line intersecting \(B \) in more than one point and let \(M = \ell' \cap \ell \). Then \(M \in D_U \subseteq B \) and \(M \notin E \). If \(|\ell' \cap P_1| = |\ell' \cap B| - 2 \), then \(\ell' \) would be a tangent to \(S_t \) at the unique point of \(\ell' \cap U \), but this is a contradiction since \(M \notin E \). We obtained Example 2.12.

If \(t = 1 \), then in the same way (using Theorem 2.13 instead of 2.14) we get that there exists an integer \(z = p^c \geq 2 \) such that each affine line with direction in \(D_U \) intersects \(U \cup \{P_1\} \) in 0 (mod \(z \)) points. If \(z \geq 3 \), then we can finish the proof as above; otherwise Theorem 2.11 implies \(|D_U| \geq q/2 + 1 \). Compared to \(|D_U| < (q + 3)/2 \), we get \(|D_U| = q/2 + 1 \) and hence \(k = q/2 \). This means that each of the \(q - 1 \) tangent lines to \(S_t \) at the points of \(U \) intersects \(\ell \) in \(D_U \). Thus these lines have 0 (mod \(z = 2 \)) points in \(U \cup \{P_1\} \), so they pass through \(P_1 \). If \(q > 4 \), then \(q - 1 > q/2 + 1 \), thus at least one of these tangents would intersect \(\ell \) in \(S_t \), a contradiction.

In desarguesian planes of prime or prime square order, there are stronger results regarding the direction problem. As a corollary, we get the characterization of Blokhuis’ semiwal and the altered Baer subplane semiwal. The three cases of the next theorem were proved by Lovász and Schrijver [30], by Gács [19], and by Gács, Lovász and Szőnyi [20], respectively.

Theorem 2.17 ([19,20,30]) Let \(U \) be a set of \(q \) points in \(\AG(2, q), q = p^h, h \leq 2, p \) prime.

1. If \(h = 1 \) and \(|D_U| = (p + 3)/2 \), then \(U \) is affinely equivalent to the graph of the function \(x \mapsto x^{p+1} \).

2. If \(h = 1 \) and \(|D_U| > (p + 3)/2 \), then \(|D_U| \geq [2(p - 1)/3] + 1 \).

3. If \(h = 2 \) and \(|D_U| \geq (p^2 + 3)/2 \), then either \(|D_U| = (p^2 + 3)/2 \) and \(U \) is affinely equivalent to the graph of the function \(x \mapsto x^{p+2} \), or \(|D_U| \geq (p^2 + p)/2 + 1 \).

Corollary 2.18 Let \(S_t \) be a tight semiwal in \(\PG(2, q), 3 \leq q = p^h, h \leq 2, p \) prime. Then we have the following.

1. If \(h = 1 \) and \(\kappa(S_t) > \min\{(p - 3)/2, (p + 4)/3\}, \) then there are two possibilities:
 - \(S_t \) is a \(V_1 \)-configuration,
 - \(S_t \) is Blokhuis’ semiwal (cf. Example 2.7).

2. If \(h = 2 \) and \(\kappa(S_t) > (p^2 - p)/2 \), then there are four possibilities:
 - \(S_t \) is of a \(V_1 \)-configuration,
 - \(S_t \) is Blokhuis’ semiwal,
 - \(S_t \) is an altered Baer subplane,
 - \(p = 2 \) and \(S_t \) is an oval in \(\PG(2, 4) \).

Proof. Let \(k = \kappa(S_t) \), and let \(\ell \) be a \(k \)-secant of \(S_t \). Consider \(\ell \) as the line at infinity and let \(U = S_t \setminus \ell \). The points of \(\ell \cap S_t \) are not determined directions, hence we have \(k + |D_U| \leq q + 1 \). As the pointset \(U \) has size \(q - 1 \), it follows from Theorem 2.13 that there exists a point \(P \) such that \(U \cup \{P\} \) determines the same directions as \(U \).
First consider the case $h = 1$. If $k > \min\{(p-3)/2, (p+4)/3\}$, then $|D_U| < \max\{\lfloor 2(p-1)/3 \rfloor + 1, (p+5)/2\}$ and thus Theorems 2.11 and 2.17 imply that either $|D_U| = 1$ and U is contained in a line, or $|D_U| = (p + 3)/2$ and $U \cup \{P\}$ is affinely equivalent to the graph of the function $x \mapsto x^{\frac{p+1}{2}}$. In the first case it is easy to see that S_1 is a V_1-configuration. In the latter case the graph of $x \mapsto x^{\frac{p+1}{2}}$ is contained in two lines, namely $[1 : 1 : 0]$ and $[1 : -1 : 0]$, and these lines are $(p+1)/2$-secants of $U \cup \{P\}$. It is easy to see that P has to be the point $(0 : 0 : 1)$, thus S_1 has (at least) two $(p - 1)/2$-secants, and it is contained in a vertexless triangle. Such semiarys were characterized by Kiss and Ruff [28, Theorem 3.3]; it follows from their characterization that S_1 must be Blokhuis’ semiary.

Now suppose that $h = 2$. If $k > (p^2 - p)/2$, then $|D_U| < (p^2 + p)/2 + 1$, thus $|D_U| \in \{1, (p^2 + 3)/2\}$ or $1 < |D_U| < (p^2 + 3)/2$. If $|D_U| = 1$ or $|D_U| = (p^2 + 3)/2$, then we can argue as before. In the remaining case it follows from Theorems 2.11 and 1.3 (or already from [34, Theorem 5.7]), that $|D_U| = p + 1$ and $U \cup \{P\} \cup D_U$ is a Baer subplane. If $p > 2$, then S_1 has exactly $p^2 - p - k$ tangents at each point of U, hence $k = p^2 - p - 1$ and S_1 is an altered Baer subplane. Finally, if $p = 2$, then $k \geq 2$ and $|D_U| = p + 1 = 3$, thus $k = 2$ and S_1 is an oval in $PG(2,4)$.

3 Proof of the main lemma

First we collect the most important properties of the Rédei polynomial. Consider a pointset $U = \{(a_i, b_i) : i = 1, 2, \ldots, |U|\}$ of the affine plane $AG(2, q)$. The Rédei polynomial of U is

$$H(X, Y) = \prod_{i=1}^{\#U}(X + a_i Y - b_i) \in GF(q)[X, Y].$$

For any fixed value $y \in GF(q)$, the univariate polynomial $H(X, y) \in GF(q)[X]$ is fully reducible and it reflects some geometric properties of U.

Lemma 3.1 (folklore) Let $H(X, Y)$ be the Rédei polynomial of the pointset U, and let $y \in GF(q)$. Then $X = x$ is a root of $H(X, y)$ with multiplicity r if and only if the line with equation $Y = yX + x$ meets U in exactly r points.

We need another result on polynomials which will be crucial in the proof. For $r \in \mathbb{R}$, let $r^+ = \max\{0, r\}$.

Theorem 3.2 (Szőnyi–Weiner Lemma, [23, Appendix, Result 6; 37, Corollary 2.4]) Let f and g be two-variable polynomials in $GF(q)[X, Y]$. Let $d = \deg f$ and suppose that the coefficient of X^d in f is non-zero. For $y \in GF(q)$, let $h_y = \deg \gcd(f(X, y), g(X, y))$, where \gcd denotes the greatest common divisor of the two polynomials in $GF(q)[X]$. Then for any $y_0 \in GF(q)$,

$$\sum_{y \in GF(q)} (h_y - h_{y_0})^+ \leq (\deg f(X, Y) - h_{y_0})(\deg g(X, Y) - h_{y_0}).$$

A partial cover of $PG(2, q)$ with $h > 0$ holes is a set of lines in $PG(2, q)$ such that the union of these lines covers all but h points. We will also use the dual of the following result due to Blokhuis, Brouwer and Szőnyi [8].

Theorem 3.3 ([8, Proposition 1.5]) A partial cover of $PG(2, q)$ with $h > 0$ holes, not all on one line if $h > 2$, has size at least $2q - 1 - h/2$.

Note that the following, main lemma is not restricted to t-semiarys. The carrier of a pencil is the common point of the lines belonging to the pencil.

Lemma 3.4 Let S be a set of s points in $PG(2, q)$, let ℓ be a k-secant of S with $2 \leq k \leq q$, and let $1 \leq t \leq q - 3$ be an integer. Suppose that through each point of $S \cap \ell$ there pass exactly t tangent lines to S, and let $s = k + q - t + \varepsilon$ for some $\varepsilon \geq 0$. Let $A(n)$ be the set of those points in $\ell \setminus S$ through which there pass at most n skew lines to S. Then the following hold.
• If \(t = 1 \), then

1. \(\varepsilon < \frac{k}{t} - \frac{1}{2} \) implies that the \(k \) tangent lines at the points of \(S \cap \ell \) and the skew lines through the points of \(A(2) \) belong to a pencil (hence \(A(2) \setminus A(1) \) is empty),

2. \(\varepsilon < \frac{2k}{t} - 2 \) implies that the \(k \) tangent lines at the points of \(S \cap \ell \) either belong to two pencils or they form a dual arc \(K \). If \(k < q \), then the skew lines through the points of \(A(2) \) belong to the same pencils or extend \(K \) to a larger dual arc.

• If \(t \geq 2 \) and \(k > q - \frac{k}{t} + 1 \), then

3. \(\varepsilon < \frac{k}{t} - \frac{1}{2} \) implies that the \(k \) tangent lines at the points of \(S \cap \ell \) and the skew lines through the points of \(A(t + 1) \) belong to \(t \) pencils whose carriers are not on \(\ell \) (hence \(A(t + 1) \setminus A(t) \) is empty),

4. \(\varepsilon < \frac{k}{t} - \frac{1}{2} \) and \(t \leq \sqrt{q} \) imply that the \(k \) tangent lines at the points of \(S \cap \ell \) belong to \(t + 1 \) pencils whose carriers are not on \(\ell \). If \(k < q \), then the skew lines through the points of \(A(t + 1) \) belong to the same pencils.

Proof. Consider the lineset \(\mathcal{L} = \{ r \in \text{PG}(2, q) : r \cap \ell \in ((S \cap \ell) \cup A(t + 1)), r \cap (S \setminus \ell) = \emptyset \} \), that is the set of tangent lines to \(S \) at the points of \(S \cap \ell \) together with the set of skew lines to \(S \) through the points of \(A(t + 1) \). For each point \(P \in \text{PG}(2, q) \setminus \ell \) we define the index of \(P \), in notation \(\text{ind}(P) \), as the number of lines of \(\mathcal{L} \) that pass through \(P \). Finally, let \(\delta = \left| \{ r \in \ell : r \cap \ell \in A(t + 1) \} \right| \) and let \(a = |A(t + 1)| \). For technical reasons, we also need a variant of these definitions. For any \(Q \in \ell \), let \(\mathcal{L}_Q = \{ r \in \ell : r \notin \{ r \in L : r \cap \ell \in A(t + 1) \} \} \) and \(a_Q = |A(t + 1) \setminus \{ Q \}| \). The \(Q \)-index of \(P \), \(\text{ind}_Q(P) \), is the number of lines of \(\mathcal{L}_Q \) that pass through \(P \). If \(P = (m) \), we write \(\text{ind}(m) \) instead of \(\text{ind}(\{ m \}) \). Note that if \(Q \in \ell \setminus (S \cup A(t + 1)) \), then \(\text{ind}_Q(P) = \text{ind}(P) \) for all \(P \in \text{PG}(2, q) \setminus \ell \).

First we are about to estimate the possible values of the \(Q \)-index of a point \(P \in \text{PG}(2, q) \setminus (S \cup \ell) \) for an arbitrarily chosen \(Q \in \ell \). Choose the system of reference so that \(P \in \ell_\infty \setminus \{ Y_\infty \} \), \(Q = Y_\infty \) and \(\ell \) is the line \([1 : 0 : 0] \). Then \((y_0) \) for some \(y_0 \in \text{GF}(q) \). Let \(\{ (0, c_1), \ldots, (0, c_{k+q-a_q}) \} \) be the set of points of \((S \cap \ell) \cup A(t + 1) \setminus \{ Q \} \), let \(D = (\ell_\infty \setminus \{ Y_\infty \}) \cap S \), \(|D| = d \) and let \(\mathcal{U} = S \setminus (\ell \cup \ell_\infty) = \{(a_1, b_1), \ldots, (a_{s-d-k}, b_{s-d-k})\} \). Consider the Rédei polynomials of \(((S \cap \ell) \cup A(t + 1)) \setminus \{ Q \} \) and \(\mathcal{U} \). Let us denote them by \(f(X, Y) = \prod_{i=1}^{s-d} (X - c_i) \) and \(g(X, Y) = \prod_{i=1}^{s-d} (X + a_y Y - b_j) \), respectively. Let \(D = \ell_\infty \setminus (D \cup \{ Y_\infty \}) \). Then for any point \((y) \in D \),

\[
h_y := \deg \gcd(f(X, Y), g(X, Y)) = k_Q + a_Q - \text{ind}_Q(y).
\]

Applying the Szőnyi–Weiner Lemma for the polynomials \(f(X, Y) \) and \(g(X, Y) \) we get

\[
\sum_{(y) \in D} \left(\text{ind}_Q(y_0) - \text{ind}_Q(y) \right) \leq \sum_{(y) \in \text{GF}(q)} \left(\text{ind}_Q(y_0) - \text{ind}_Q(y) \right)^+ \\
\leq \text{ind}_Q(y_0)(s - d - k - k_Q - a_Q + \text{ind}_Q(y_0)).
\]

After rearranging it we obtain

\[
0 \leq \text{ind}_Q(y_0)^2 - \text{ind}_Q(y_0)(q + k + k_Q + a_Q - s) + \sum_{(y) \in D} \text{ind}_Q(y).
\]

As \(\sum_{(y) \in D} \text{ind}_Q(y) = k_Q t + \delta_Q \) and \(s = k + q - t + \varepsilon \), we have

\[
0 \leq \text{ind}_Q(y_0)^2 - \text{ind}_Q(y_0)(k_Q + a_Q + t - \varepsilon) + k_Q t + \delta_Q.
\]

First we simultaneously prove parts 1, 3 and 4. Here we always choose \(Q \) so that \(Q \in \ell \setminus S \), whence \(k_Q = k \) follows. Thus the condition \(\varepsilon < \frac{k}{t} - 1 \) and the obvious fact \(\delta_Q \leq (t + 1) a_Q \) imply that (2) gives a contradiction for \(t + 1 \leq \text{ind}_Q(y_0) \leq k + a_Q - \varepsilon - 1 \). We say that a point \(P \) has large \(Q \)-index if \(\text{ind}_Q(P) \geq k + a_Q - \varepsilon \) holds. Let \(\mathcal{P}_Q \) denote the set of points with large \(Q \)-index.
Now we are going to prove that each line l' of \mathcal{L}_Q contains a point of \mathcal{P}_Q. First suppose that $l' \in \mathcal{L}_Q$ is a tangent to \mathcal{S} at a point $T \in l \cap \mathcal{S}$. Suppose to the contrary that each point of l' has Q-index at most t. Then
\[\sum_{P \in l' \setminus T} \text{ind}_Q(P) \leq tq. \tag{3} \]

On the other hand, as every tangent to \mathcal{S} through the points of $(\mathcal{S} \cap l) \setminus T$ intersects l', the sum on the left-hand side is at least $(k - 1)t + q$, contradicting our assumption on k. Similarly, if l' is a skew line to \mathcal{S} passing through a point $T \in \mathcal{A}(t + 1) \setminus \{Q\}$, then the right-hand side of (3) remains the same and the left-hand side is at least $kt + q$, which is a contradiction, too. Hence \mathcal{L}_Q is contained in the union of pencils with carriers in \mathcal{P}_Q.

Clearly, $|\mathcal{P}_Q| \geq t$. On the other hand, suppose that there are more than t points with large Q-index and let $R_1, R_2, \ldots, R_{t+1}$ be $t + 1$ of them. Then
\[(t + 1)(k + a_Q - \varepsilon) \leq \sum_{j=1}^{t+1} \text{ind}_Q(R_j) \leq tk + (t + 1)a_Q + \left(\frac{t+1}{2} \right). \]

This is a contradiction if $\varepsilon < \frac{k}{t + 1} - \frac{1}{2}$, which holds in parts 1 and 3. Regarding part 4, if there were more than $t + 1$ points with large Q-index, then an analogous argument and $\varepsilon < \frac{2k}{t + 1} - \frac{1}{2}$ would yield a contradiction. As $\varepsilon < \frac{k}{t + 1} - 1$, the bound on ε follows from the condition on k and $t \leq \sqrt{q}$.

If $k + |\mathcal{A}(t + 1)| < q + 1$, then let Q be any point of $\mathcal{S} \setminus (\mathcal{S} \cup \mathcal{A}(t + 1))$. Thus the lines of $\mathcal{L}_Q = \mathcal{L}$ are contained in t pencils (or $t + 1$ in part 4) whose carriers have large Q-index. In this case parts 1, 3 and 4 are proved.

Assume now $k + |\mathcal{A}(t + 1)| = q + 1$. If $k = q$, then let Q be the unique point contained in $\mathcal{A}(t + 1)$. In case of part 4, the pencils with carriers with large Q-index contain the lines of \mathcal{L}_Q, which was to be shown. In case of parts 1 and 3 we obtain a contradiction in the following way. The kt tangents at the points of $\mathcal{S} \cap \mathcal{A}$ are contained in t pencils having carriers with large Q-index. If $t = 1$, then through the point $R \in \mathcal{P}_Q$ there pass q tangent lines, hence the points of $\mathcal{S} \setminus \mathcal{S}$ are contained in the line RQ. Thus through Q there pass only two non-skew lines, t and RQ. The condition $q - 3 \geq t - 1$ implies $(q + 1) - 2 > 2$, hence $Q \notin \mathcal{A}(2)$, a contradiction. If $t > 1$, then it is easy to see that $\mathcal{P}_Q \cup (\mathcal{S} \setminus \mathcal{S})$ is contained in a line through Q. Again $q - 3 \geq t$ implies that through Q there pass more than $t + 1$ skew lines, hence $Q \notin \mathcal{A}(t + 1)$, a contradiction.

If $k < q$, then let Q_1 and Q_2 be two distinct points of $\mathcal{A}(t + 1)$. As seen before, the lines of \mathcal{L}_{Q_1} are blocked by the points of \mathcal{P}_{Q_i} for $i = 1, 2$, hence, by $\mathcal{L}_{Q_1} \cup \mathcal{L}_{Q_2} = \mathcal{L}$, it is enough to show that $\mathcal{P}_{Q_1} = \mathcal{P}_{Q_2}$.

If a point is in \mathcal{P}_{Q_1}, then its Q_i-index is at least $k + a_Q - \varepsilon = q - \varepsilon$, while the other points have Q_i-index at most t for $i = 1, 2$. The inequality $|\text{ind}_{Q_1}(P) - \text{ind}_{Q_2}(P)| \leq 1$ obviously holds, thus it is enough to show that $q - \varepsilon - t > 1$, which follows from the assumptions $\varepsilon < \frac{k}{t + 1} - 1$ and $t \leq q - 3$.

Finally, we prove part 2. We distinguish three cases.

a) If $k + |\mathcal{A}(2)| < q + 1$, then let Q be any point of $\mathcal{S} \setminus (\mathcal{S} \cup \mathcal{A}(2))$. Here $\mathcal{L}_Q = \mathcal{L}$.

b) If $k + |\mathcal{A}(2)| = q + 1$ and $k \leq q - 1$, then the choice of Q will depend on the point $P \in \mathcal{P}(2) \setminus (\mathcal{S} \cup \mathcal{S})$ whose index is to be estimated. In this case let Q be any point of \mathcal{S} such that PQ intersects $\mathcal{S} \setminus \mathcal{S}$ (as $\mathcal{S} \setminus \mathcal{S}$ is not empty, Q can be chosen in this way). Note that $PQ \notin \mathcal{L}$, thus in this case $\text{ind}_Q(P) = \text{ind}(P)$.

c) If $k + |\mathcal{A}(2)| = q + 1$ and $k = q$, then let Q be the unique point contained in $\mathcal{A}(2)$.

In cases a) and b) we are to prove that \mathcal{L} is either a dual arc or is contained in the union of two pencils; in case c) we have to prove the same regarding the lineset \mathcal{L}_Q. In all cases
\[\frac{2k}{3} - 2 \leq \frac{2k}{3} - 2 + \frac{a_Q}{3} \tag{4} \]
follows from \(k_Q = k \), except in case b), where (4) follows from \(k_Q \geq k - 1 \) and \(a_Q \geq 2 \). Thus our assumption \(\epsilon < 2k/3 - 2 \) yields

\[
\epsilon < \frac{2k_Q}{3} - 2 + \frac{a_Q}{3},
\]

and so (2) gives a contradiction for \(3 \leq \text{ind}_Q(P) \leq k_Q + a_Q - 2 - \epsilon \).

In cases a) and c) it follows that the lines of \(L_Q \) either form a dual arc or we are finished, or there is a point \(R \) with \(Q \)-index at least \(k_Q + a_Q - 1 - \epsilon \). In case b) either \(L \) is a dual arc and we are finished, or there is a point \(R \) with index at least \(q - 1 - \epsilon \) (since in this case \(k_Q + a_Q = q \)). So it remains to handle the case when such a point \(R \) exists. Let \(B = (\ell \setminus (S \cup A(2))) \cup (S \setminus \ell) \cup R \) and denote by \(h \) the number of lines of \(\text{PG}(2,q) \) not blocked by \(B \). It is easy to see that, apart from \(\ell \), \(B \) blocks all but at most \((k + 2|A(2)| - (k_Q + a_Q - 1) - \epsilon)\) lines of \(\text{PG}(2,q) \). In case a) \(B \) blocks \(\ell \) and \(k + |A(2)| = k_Q + a_Q \), hence

\[
h \leq |A(2)| + 1 + \epsilon.
\]

In cases b) and c) \(B \) does not block \(\ell \) and \(k + |A(2)| = (k_Q + a_Q) + 1 \), thus

\[
h \leq |A(2)| + 3 + \epsilon.
\]

Suppose to the contrary that these \(h \) lines do not pass through one point. Then by the dual of Theorem 3.3 we have

\[
|B| = q + 1 - (k + |A(2)|) + (q - 1 + \epsilon) + 1 \geq 2q - 1 - h/2.
\]

Rearranging it we obtain \(\epsilon \geq k + |A(2)| - 2 - h/2 \). In case a), together with (6), this would imply \(\epsilon \geq 2k/3 - 5/3 + |A(2)|/3 \). In cases b) and c), together with (7), \(\epsilon \geq (q + k)/3 - 2 \) would follow. Both cases yield a contradiction because of our assumption on \(\epsilon \). Hence the corresponding lines can be blocked by \(R \) and one more point, thus they belong to two pencils.

Although the forthcoming applications in this paper all use Lemma 3.4, we shall give another, more general but less detailed result whose proof is based on the very same ideas.

Theorem 3.5 Suppose that \(S \subset \text{PG}(2,q) \) is a pointset, \(\ell \) is a line, and let \(s = |S \setminus \ell| \). Let \(K \subset \ell \setminus S \) be a set of \(k \leq q \) points. Denote by \(L \) the set of skew lines to \(S \) through the points of \(K \), not including \(\ell \), and let \(\delta = |L| \). Let \(m \) be an integer such that any point of \(K \) is incident with at most \(m \) lines of \(L \). Suppose that there exists an integer \(t \) such that \((t - 1)q + m < \delta < (t + 1)(k + q - s - t - 1) \). If \(\delta < (n + 1)(k + q - s - t - n/2) \) for some integer \(n \), then the lines of \(L \) belong to \(n \) pencils whose carriers are not on \(\ell \).

Proof. Let the index of a point \(P \), \(\text{ind}(P) \), be the number of lines of \(L \) incident with \(P \). Similarly as in the proof of Lemma 3.4, let \(P \in \text{PG}(2,q) \setminus (S \cup \ell) \); we may assume that \(\ell \) is the line \([1 : 0 : 0] \), \(P = (y_0) \in \ell_{\infty} \setminus \{Y_{\infty}\} \) and \(Y_{\infty} \notin K \). Let \(D = \ell_{\infty} \setminus \{Y_{\infty}\} \cap S \), \(|D| = d \) and let \(U = S \setminus (\ell \cup \ell_{\infty}) \). Again, let \(g(X,Y) \) and \(f(X,Y) \) be the Rédei polynomials of \(K \) and \(U \); their degrees are \(k \) and \(s - d \), respectively. Let \(D = \ell_{\infty} \setminus (D \cup \{Y_{\infty}\}) \). Then for any point \((y) \in D \),

\[
h_y := \deg \gcd(f(X,y), g(X,y)) = k - \text{ind}(y).
\]

Applying the Szőnyi–Weiner Lemma we get

\[
(q - d)\text{ind}(y_0) - \delta = \sum_{(y) \in D} (\text{ind}(y_0) - \text{ind}(y)) \leq \text{ind}(y_0)(s - d - k + \text{ind}(y_0)).
\]

After rearranging it we obtain

\[
0 \leq \text{ind}(P)^2 - \text{ind}(P)(q + k - s) + \delta.
\]

Assuming \(\text{ind}(P) = t + 1 \), (8) contradicts \(\delta < (t + 1)(k + q - s - t - 1) \), hence either \(\text{ind}(P) \leq t \) or \(\text{ind}(P) \geq q + k - s - t \). Suppose that there is a line of \(L \) containing no point with large index. Then \(\delta \leq m + q(t - 1) \) follows, a contradiction. Hence the lines of \(L \) are blocked by the points with large index.
If there were at least \(n + 1 \) such points, then \(\delta \geq (n + 1)(q + k - s - t) - \binom{n+1}{2} \) would follow, contradicting \(\delta < (n + 1)(k + q - s - t - n/2) \).

In [36, Section 3], among other techniques, Szönyi and Weiner also use their lemma (Lemma 3.2) in basically the same way to derive a result roughly saying that if a small point set has only a few skew lines to it, then it can be extended to a blocking set by adding a few points to it. Now, with the notation of Theorem 3.3, extending the set \((S \cup \ell) \setminus K\) to a blocking set by adding \(n \) points to it is equivalent to finding \(n \) pencils that contain the lines of \(L \). However, the points found using the result of [36] might also be on \(\ell \). Now let us give some immediate consequences of Lemma 3.4.

Corollary 3.6 Let \(S_1 \) be a semiarc in PG\((2, q)\) and let \(\ell \) be a \(-k\)-secant of \(S_1 \). If \(|S_1| < q + \frac{nk}{2} - 2 \), then the \(k \) tangent lines at the points of \(S_1 \cap \ell \) belong to a pencil. If \(|S_1| < q + \frac{nk}{2} - 3 \), then the \(k \) tangent lines at the points of \(S_1 \cap \ell \) either belong to two pencils or they form a dual \(k \)-arc.

If \(k = q - 1 \), then we get a stronger result than the previous characterization of Kiss [26, Corollary 3.1].

Corollary 3.7 Let \(S_1 \) be a semiarc in PG\((2, q)\). If \(S_1 \) has a \((q - 1)\)-secant \(\ell \) and \(|S_1| < \frac{nk}{2} - \frac{q}{2} \) holds, then \(S_1 \) is contained in a vertexless triangle and it has two \((q - 1)\)-secants.

Proof. Let \(\ell \setminus S_1 = \{A, B\} \). It follows from Corollary 3.6 that the tangents at the points of \(S_1 \cap AB \) are contained in a pencil with carrier \(C \). Thus \(S_1 \) is contained in the sides of the triangle \(ABC \). Suppose to the contrary that \(AC \) and \(BC \) both intersect \(S_1 \) in less than \(q - 1 \) points. Then there exist \(P, Q \) such that \(P \in AC \setminus S_1 \cup \{A, C\} \) and \(Q \in BC \setminus S_1 \cup \{B, C\} \). The point \(E := PQ \cap AB \) is in \(S_1 \) and \(PQ \) is a tangent to \(S_1 \) at \(E \). This is a contradiction since \(C \notin PQ \).

Note that for a \(t \)-semiarc \(S_1 \), as \(t < q \) implies \(\kappa(S_1) \leq q + 1 - t \), the assumption \(q - \frac{q}{2} + 1 < k \) in Lemma 3.4 can hold only if \(t < \sqrt{q} \).

Corollary 3.8 Let \(S_1 \) be a \(t \)-semiarc in PG\((2, q)\), \(q \geq 7 \), with \(1 < t < \sqrt{q} \). Suppose that \(S_1 \) has a \(k \)-secant \(\ell \) and \(k > q - \frac{q}{2} + 1 \). If \(|S_1| < (q - t + k) + \frac{k}{t+1} - 1 \), then the \(k \) tangent lines at the points of \(S_1 \cap \ell \) belong to \(t + 1 \) pencils. If \(|S_1| < (q - t + k) + \frac{k}{t+1} - \frac{q}{2} \), then the \(k \) tangent lines at the points of \(S_1 \cap \ell \) belong to \(t \) pencils.

Remark 3.9 Theorem 2.13 follows from Lemma 3.4 with \(t = 1 \) and \(\varepsilon = 0 \). To see this, let \(S = U \cup (\ell_\infty \setminus D_\ell) \). Then through each point of \(\ell_\infty \cap S \), there passes a unique tangent to \(S \). According to Lemma 3.4, these tangent lines are contained in a pencil, whose carrier can be added to \(U \).

Example 3.10 It follows from Theorem 3.3 that a cover of the complement of a conic in PG\((2, q)\), \(q \) odd, by external lines, contains at least \(3(q - 1)/2 \) lines, see [8, Proposition 1.6]. Blokhuis et al. also remark that this bound can be reached for \(q = 3, 5, 7, 11 \) and there is no other example of this size for \(q < 25, q \) odd. Now, let \(\ell \) be a tangent to a conic \(C \) at the point \(P \in C \) and let \(U \) be a set of \(3(q - 1)/2 \) interior points of the conic such that these points block each non-tangent line. From the dual of Blokhuis et al.’s result we know that such set of interior points exists in case of \(q = 3, 5, 7, 11 \). Let \(S = (U \cup \ell) \setminus \{P\} \). Then the tangents to \(S \) at the points of \(\ell \cap S \) obviously do not pass through one point and this shows that part 1 of Lemma 3.4 is sharp if \(k = q \) and \(q = 5, 7, 11 \).

Example 3.11 ([28, Theorem 3.2]) In PG\((2, q)\), there exists a semiarc \(S_1 \) of size 15 contained in a triangle without two of its vertices. The side opposite to the one vertex contained in \(S_1 \) is a \(6 \)-secant and the other two sides are \(5 \)-secants. The tangents at the points of the \(6 \)-secant do not pass through one point. Hence Corollary 3.6 is sharp at least for \(q = 8 \).

In the following we give some examples for small \(t \)-semiarc with long secants in the cases \(t = 1, 2, 3 \) such that the tangents at the points of a long secant do not belong to \(t \) pencils. These assertions can be easily proved using Menelaus’ Theorem. Denote by \(GF(q)^+ \) and \(GF(q)^\times \) the additive and multiplicative groups of the field \(GF(q) \), \(q = p^k \), \(p \) prime, respectively, and by \(A \oplus B \) the direct sum of the groups \(A \) and \(B \).
Example 3.12 ([28, p. 104]) Consider GF(q), q square, as the quadratic extension of GF(\(\sqrt{q}\)) by \(i\). Then the pointset \(S_1 = \{(1 : 0 : 0) \cup (1 : 1 : 0) \cup (0 : 1 : 0) : Y_\infty, (0 : 1 : 1), (s + i : 0) : s \in GF(\sqrt{q})\}\) is a semiow in PG(2, q) with three \((q - \sqrt{q})\)-secants if \(q > 4\).

Example 3.13 ([16, p. 689]) Let GF(q)+ = A \(\oplus\) B, where A and B are proper subgroups of GF(q)+ and let X = A \(\cup\) B. The pointset \(S_2 = \{(0 : s : 1), (1 : s : 1), (1 : 0 : 0) : s \in GF(q) \setminus X\}\) is a 2-semiow in PG(2, q) with three \((q + 1 - |A| - |B|)\)-secants if \(q > 4\). Note that \(2\sqrt{q} \leq |A| + |B| \leq q/p + p\).

Example 3.14 Similarly, let GF(q)* = A \(\oplus\) B and X = A \(\cup\) B, where A and B are proper subgroups of GF(q)*. The pointset \(S_3 = \{(0 : s : 1), (s : 0 : 1), (1 : s : 0) : s \in GF(q) \setminus (X \cup \{0\})\}\) is a 3-semiow in PG(2, q) with three \((q - |A| - |B|)\)-secants if \(q > 7\). Note that \(2\sqrt{q} \leq |A| + |B| \leq (q + 3)/2\).

4 Semiowcs and blocking sets

In this section we associate blocking sets to semiowcs. Using strong characterization results on blocking sets, we characterize small semiowcs with long secants. Note that the next lemma is not restricted to t-semiowcs.

Lemma 4.1 Let \(S\) be a set of points in \(\Pi_q\), let \(\ell\) be a k-semiow of \(S\) with \(2 \leq k \leq q\), and let \(1 \leq t \leq q - 3\) and \(n \geq t\) be integers. Suppose that through each point of \(S \cap \ell\) there pass exactly \(t\) tangent lines to \(S\), and let \(|S| = k + q - t + \varepsilon\) for some \(\varepsilon \geq 0\). Let \(A(n)\) be the set of those points in \(\ell \cap S\) through which there pass at most \(n\) skew lines to \(S\). Assume that the \(kt\) tangent lines to \(S\) at the points of \(S \cap \ell\) and the skew lines through the points of \(A(n)\) belong to \(n\) pencils. Let \(\mathcal{P}\) be the set of carriers of these pencils and assume that \(\mathcal{P} \cap \ell = \emptyset\). Define the pointset \(B_n(S, \ell)\) in the following way:

\[B_n(S, \ell) := (\ell \setminus (A(n) \cup S)) \cup (S \setminus \ell) \cup \mathcal{P},\]

Then \(B_n(S, \ell)\) has size \(2q + 1 + \varepsilon + n - t - k - |A(n)|\). If \(\ell \cap B_n(S, \ell) = \emptyset\) (that is \(\ell \subseteq A(n) \cup S\)), then \(B_n(S, \ell)\) is an affine blocking set in the affine plane \(\Pi_q\) \(\setminus\) \(\ell\); otherwise \(B_n(S, \ell)\) is a blocking set in \(\Pi_q\). In the latter case the points of \(\ell \cap B_n(S, \ell)\) are essential points.

Proof. Let \(\ell' \neq \ell\) be any line in \(\Pi_q\) and let \(E\) be the point \(\ell \cap \ell'\). If \(\ell'\) meets \((\ell \setminus (A(n) \cup S)) \cup (S \setminus \ell)\), then \(\ell'\) is blocked by \(B_n(S, \ell)\). Otherwise \(\ell'\) is a tangent to \(S\) at a point of \(\ell \cap S\) or \(\ell'\) is a skew line to \(S\) that intersects \(A(n)\). In both cases \(\ell'\) is blocked by \(\mathcal{P}\), hence it is also blocked by \(B_n(S, \ell)\).

If \(\ell \subseteq A(n) \cup S\), then \(B_n(S, \ell)\) is an affine blocking set in the affine plane \(\Pi_q\) \(\setminus\) \(\ell\). Otherwise \(\ell\) is blocked by \(\ell \setminus (A(n) \cup S)\) and hence \(B_n(S, \ell)\) is a blocking set in \(\Pi_q\). In the latter case through each point of \(\ell \cap B_n(S, \ell)\) there pass at least \(n + 1\) skew lines to \(S\) and hence through each of them there is at least one tangent to \(B_n(S, \ell)\).

In PG(2, q) we will combine Lemma 4.1 with Lemma 3.4 in the cases \(n = t\) or \(n = t + 1\) to obtain small blocking sets from small semiowcs having a long secant. The pointset \(B_n(S, \ell)\) is an affine blocking set if and only if \(k + |A(n)| = q + 1\), and in this case \(|B_n(S, \ell)| = q + \varepsilon + n - t\). An affine blocking set in AG(2, q) has at least \(2q - 1\) points (see [12] or [25]; also follows from Theorem 3.3). Hence if we consider PG(2, q), then \(\varepsilon < q - n + t - 1\) implies that \(B_n(S, \ell)\) is not an affine blocking set. This condition will always hold for \(n = t\) or \(n = t + 1\).

Example 4.2 If \(S_1\) is Blokhuis’ semiow and \(\ell\) is one of the \((q - 1)/2\)-secants of \(S_1\), then \(S_1\) and \(\ell\) satisfy the conditions of Lemma 4.1 with \(n = 1\) and the obtained blocking set \(B_1(S_1, \ell)\) is a minimal blocking set called the projective triangle (see e.g. [24, Lemma 13.6]).

Lemma 4.3 Let \(S_t\) be a t-semiow in PG(2, q), \(q = p^b\), \(p\) prime, with \(t \leq 2\sqrt{q}/3\). Let \(\ell\) be a k-semiow of \(S_t\) and suppose that \(S_t\) and \(\ell\) satisfy the conditions of Lemma 4.1 with \(n = t\). With the notation of Lemma 4.1, if \(p = 2\) and \(\varepsilon < k - \frac{4}{7}(q - 1)\), or \(p\) is odd and \(\varepsilon < k - \frac{3}{7}(q - 1)\), then \(|A(\ell)| \geq t\).
Proof. In both cases we have $|B_t(S_t, \ell)| = 2q + 1 + \varepsilon - k - |A(t)| < 3(q + 1)/2$, hence $B_t(S_t, \ell)$ is a small blocking set. Let B be the unique (cf. Theorem 1.1) minimal blocking set contained in it and let e be the exponent of B (cf. Theorem 1.2). Note that if $\varepsilon < k - \frac{4}{5}(q - 1)$, then $p^e \geq 8$ follows from Theorem 1.2. Also $p^e \geq 3$ holds when p is odd.

The points of $\ell \cap B_t(S_t, \ell)$ are essential points of $B_t(S_t, \ell)$ hence $\ell \cap B_t(S_t, \ell) = \ell \cap B$. The size of $B \cap (S_t \setminus \ell)$ is at least $q - t$; let U be $q - t$ points from this pointset. Consider ℓ as the line at infinity. We wish to apply Lemma 2.15 with $E = A(t)$, $F = \ell \setminus S_t$, $z = p^e$ and with P defined as in Lemma 4.1. Note that the points P are essential (thus $P \subset B$) and $t \leq \sqrt{2q}/3 \leq \sqrt{q(z - 1)/z}$. Through each point of U there pass t tangents to S_t. These lines are also tangents to U and they have direction in F. Let l' be one of these tangents; then $l' \cap (B \setminus \ell) = l' \cap (P \cup U)$. Thus, by $|l' \cap B| \equiv 1 \pmod{z}$, we have that if l' has direction in $F \setminus E$, then $|l' \cap (P \cup U)| \equiv 0 \pmod{z}$. Hence the two required properties of Lemma 2.15 hold, thus $|A(t)| \geq t$.

To proceed, we need some results on semiarcs with two long secants proved by Csajbók.

Lemma 4.4 ([15, Theorem 13]) Let S_t be a t-semiarc in the projective plane Π_q, $1 < t < q$. Suppose that there exist two lines ℓ_1 and ℓ_2 such that $|\ell_1 \setminus (S_t \cup \ell_2)| = n$ and $|\ell_2 \setminus (S_t \cup \ell_1)| = m$. If $\ell_1 \cap \ell_2 \notin S_t$, then $n = m = t$ or $q \leq \min\{n, m\} + 2nm/(t - 1)$.

We cite only three particular cases of the complete characterization of t-semiarcs in PG$(2, q)$ with two $(q - t)$-secants whose common point is not in the semiarc. Such semiarcs are called semiarcs of V_t^o type. Note that the tight semiarcs of V_t^o type are precisely the V_t-configurations.

Theorem 4.5 ([15, Theorem 22]) Let S_t be a t-semiarc of V_t^o type in PG$(2, q)$, $q = p^n$, p prime, and let $t \leq q - 2$. Then the following hold.

1. If $\gcd(q, t) = 1$, then S_t is contained in a vertexless triangle.

2. If $\gcd(q, t) = 1$ and $\gcd(q - 1, t - 1) = 1$, then S_t is a V_t-configuration.

3. If $\gcd(q - 1, t) = 1$, then S_t is contained either in a vertexless triangle, or in the union of three concurrent lines with their common point removed.

Now we are ready to prove our main characterization theorems for small semiarcs with a long secant. We distinguish two cases as the results on blocking sets in PG$(2, q)$ are stronger if q is a prime.

Theorem 4.6 Let S_t be a t-semiarc in PG$(2, p)$, p prime.

1. If $t = 1$, $p \geq 5$ and $\kappa(S_1) \geq \frac{p + 1}{2}$, then
 - S_1 is contained in a vertexless triangle and has two $(p - 1)$-secants, or
 - S_1 is projectively equivalent to Bokhsh’s semiarc, or
 - $|S_1| \geq \min\left\{\frac{3\kappa(S_1)}{2} + p - 2, 2\kappa(S_1) + \frac{p + 1}{2}\right\}$.

2. If $t = 2$, $p \geq 7$ and $\kappa(S_2) \geq \frac{p + 3}{2}$, then
 - S_2 is a V_2-configuration, or
 - $|S_2| \geq \min\left\{\frac{4\kappa(S_2)}{3} + p - 3, 2\kappa(S_2) + \frac{p - 1}{2}\right\}$.

3. If $3 \leq t < \sqrt{p}$, $p \geq 23$ and $\kappa(S_t) > p - \frac{t}{2} + 1$, then
 - S_t is contained in a vertexless triangle and has two $(p - t)$-secants, or
 - $|S_t| \geq \kappa(S_t) \frac{t + 2}{t + 1} + p - t - 1$.

13
Proof. Let $k = \kappa(S_t)$ and let ℓ be a k-secant of S_t. Note that as t is small enough, Theorem 2.3 implies that $k \leq q - t$. We define $A(n) \subset \ell$ as usual.

Part 1. Assume that $|S_1| < \min\left\{ \frac{14k}{2} + p - 2, 2k + \frac{p+1}{2} \right\}$. If $|S_1| = k + p - 1 + \varepsilon$, then we have $\varepsilon < \min\left\{ \frac{k}{2} - 1, k - \frac{p+3}{2} \right\}$, hence Lemma 3.4 implies that the tangents at the points of $\ell \cap S_1$ and the skew lines through the points of $A(1)$ are contained in a pencil with carrier P. Construct the small blocking set $B_1(S_1, \ell)$ as in Lemma 4.1 with $n = 1$. The size of $B_1(S_1, \ell)$ is $2p + 1 + \varepsilon - k - |A(1)| = 3(p + 1)/2 + 1$, thus Theorem 1.3 implies that $B_1(S_1, \ell)$ either contains a line or it is a minimal blocking set of size $3(p + 1)/2$ and each of its points has exactly $(p - 1)/2$ tangents.

In the first case, let ℓ_1 be the line contained in $B_1(S_1, \ell)$. Since no p points of S_1 can be collinear, it follows from the construction of $B_1(S_1, \ell)$ that ℓ_1 is a $(p - 1)$-secant of S_1. The assertion now follows from Corollary 3.7. In the latter case, as the number of tangents to $B_1(S_1, \ell)$ through P is $k + |A(1)|$, we have that $k + |A(1)| = (p - 1)/2$. Then $\varepsilon = 0$ follows from $3(p + 1)/2 = |B_1(S_1, \ell)| = 2p + 1 + \varepsilon - k - |A(1)|$, hence S_1 is a tight semiwal and, by Corollary 2.18, it is projectively equivalent to Blokhuis’ semiwal.

Part 2. Assume that $|S_2| < \min\left\{ \frac{4k}{3} + p - 3, 2k + \frac{p+1}{2} \right\}$. If $|S_2| = k + p - 2 + \varepsilon$, then we have $\varepsilon < \min\left\{ \frac{k}{3} - 1, k - \frac{p+3}{2} \right\}$, hence Lemma 3.4 implies that the tangents at the points of $\ell \cap S_2$ and the skew lines through the points of $A(2)$ are contained in two pencils whose carriers we denote by P_1 and P_2. Construct the blocking set $B_2(S_2, \ell)$ as in Lemma 4.1. Then Theorem 1.3 implies that $B_2(S_2, \ell)$ either contains a line ℓ_1 or it is a minimal blocking set of size $3(p + 1)/2$ and each of its points has exactly $(p - 1)/2$ tangents.

In the first case, since S_2 cannot have more than $p - 2$ collinear points, it follows from the construction of $B_2(S_2, \ell)$ that ℓ_1 is a $(p - 2)$-secant of S_2 and, hence so is ℓ. Then Theorem 4.5 implies that S_2 is a V_2-configuration. In the latter case, both P_1 and P_2 have exactly $(p - 1)/2$ tangent lines to $B_2(S_2, \ell)$. But this is a contradiction since these two points together have at least $2k$ tangents to $B_2(S_2, \ell)$, which is greater than $p - 1$.

Part 3. Assume that $|S_1| < k + \frac{2p}{3} + p - t - 1$. Then $|S_1| = k + p - t + \varepsilon$, where $\varepsilon < \frac{k}{t+1} - 1$, hence Lemma 3.4 implies that the tangents at the points of $\ell \cap S_1$ are contained in $t + 1$ pencils. Construct the blocking set $B_{t+1}(S_1, \ell)$ as in Lemma 4.1. Since $\varepsilon < \frac{k}{t+1} - 1 < k - \frac{p+1}{2}$ holds by $t \geq 3$ and $k > p - p/t + 1$, $B_{t+1}(S_1, \ell)$ is small. Then Theorem 1.3 implies that it contains a line ℓ_1. Note that $\ell_1 \cap \ell \not\subset S_1$. Since S_1 cannot have more than $p - t$ collinear points, by the construction of $B_{t+1}(S_1, \ell)$ we have that ℓ_1 is a $(p - t)$-secant or a $(p - t - 1)$-secant of S_t, and hence so is ℓ. Then (using $p \geq 23$ and $t < \sqrt{p}$) Lemma 4.4 implies that both ℓ and ℓ_1 are $(p - t)$-secants. Since $\gcd(t, p) = 1$, Theorem 4.5 implies that S_t is contained in a vertexless triangle.

For non-prime values of q, our next theorem roughly says that if t is small, then small t-semiarcas with a long secant are of V_t^o type. If q is a square, then we can characterize altered Baer subplanes (Example 2.10) as well. Recall that altered Baer subplanes are t-semiarcas of size $(q - \sqrt{q} - t) + (q - t)$ with a $(q - \sqrt{q} - t)$-secant.

Theorem 4.7 Let S_t be a t-semiarc in $\text{PG}(2, q)$, $q = p^h$, $h \geq 2$ if p is an odd prime and $h \geq 6$ if $p = 2$. Suppose that

$\kappa(S_t) \geq \left\{ \begin{array}{ll} q - \sqrt{q} - t & \text{if } h \text{ is even,} \\ q - c_pq^{2/3} - t & \text{if } h \text{ is odd,} \end{array} \right.$

where $c_p = 2^{-1/3}$ for $p = 2, 3$ and $c_p = 1$ for $p > 3$ (cf. Theorem 1.3). Then the following hold.

1. If $h = 2d$ and $t < (\sqrt{5} - 1)(\sqrt{q} - 1)/2$, then
 - $|S_t| < 2\kappa(S_t) + \sqrt{q}$ implies that S_t is of V_t^o type;
 - $|S_t| = 2\kappa(S_t) + \sqrt{q}$ and $q > 9$ implies that S_t is either of V_t^o type or an altered Baer subplane.

2. If $h = 2d + 1$, $|S_t| < 2\kappa(S_t) + c_pq^{2/3}$ and $t < q^{1/3}/3 - 3/2$ (or $t < (2q)^{1/3}/2 - 2$ when $p = 2, 3$), then S_t is of V_t^o type.

Proof. Let $k = \kappa(S_t)$ and let ℓ be a k-secant of S_t. Note that as t is small enough, Theorem 2.3 implies that $k \leq q - t$. We define $A(n) \subset \ell$ as usual. To apply Lemma 3.4, we need $k > q - \frac{t}{2} + 1$: furthermore,
$\varepsilon < k/2 - 1$ for $t = 1$ and $\varepsilon < k/(t+1) - t/2$ for $t \geq 2$. Let us first consider the condition on k. If q is a square, then $k \geq \sqrt{q} - t - q - \frac{q}{t} + 1$ holds if $t < \Phi(\sqrt{q} - 1)$, where $\Phi = \frac{\sqrt{q} - 1}{2} \approx 0.618034$. If q is not a square, then $t < q^{1/3} - 3/2$ (or $t < (2q)^{1/3} - 2$ when $p = 2, 3$) and $k \geq q - c_p q^{1/3} - t$ imply $k > q - \frac{q}{t} + 1$.

Next we treat the condition on ε. Let us define $b(q)$ as follows:

$$b(q) := \begin{cases} \sqrt{q} & \text{if } h \text{ is even,} \\ c_p q^{2/3} & \text{if } h \text{ is odd.} \end{cases}$$

As $|S_t| = k + q - t + \varepsilon$, $|S_t| \leq 2k + b(q)$ implies $\varepsilon \leq k - q + b(q) + t$.

Suppose first that $t \geq 2$. As $\varepsilon < k - q + b(q) + t$, it is enough to prove $k - q + b(q) + t < \frac{q}{t+1} - \frac{q}{2}$. After rearranging we get that this is equivalent to

$$k < (q - t) + \left(\frac{q - b(q)}{t} - \frac{t}{2} - b(q) - \frac{3}{2} \right),$$

thus it is enough to see (as $k \leq q - t$ holds automatically) that

$$\frac{q - b(q)}{t} - \frac{t}{2} - b(q) - \frac{3}{2} > 0.$$

As a function of t the left hand side decreases monotonically. It is positive when t is maximal (under the respective assumptions), hence the condition of Lemma 3.4 on ε is satisfied for $t \geq 2$.

If $t = 1$, then the upper bounds on t imply $q \geq 9$ for $h = 2d$ and $q \geq 27$ for $h = 2d + 1$. From these lower bounds on q and from $k < q - 1$ it follows that $k/2 \leq (q - 1)/2 \leq q - b(q) - 2$, whence we obtain $k - q + b(q) + 1 \leq \frac{q}{2} - 1$. If $|S_1| < 2k + b(q)$, then $\varepsilon < k - q + b(q) + 1 \leq \frac{q}{2} - 1$. If $|S_1| = 2k + b(q)$, then $\varepsilon = k - q + b(q) + 1$ and we are in the case $h = 2d$; here the assumption $q > 9$ implies $\varepsilon = k - q + b(q) + 1 < \frac{q}{2} - 1$. Thus the condition of Lemma 3.4 on ε also holds for $t = 1$.

For $|S_t| < 2k + b(q)$, we prove the h even and h odd cases of the theorem simultaneously. Construct the blocking set $B_t(S_t, \ell)$ as in Lemma 4.1. The conditions in Lemma 4.3 hold, hence the size of $A(t)$ is at least t. The size of $B_t(S_t, \ell)$ is $2q + 1 + \varepsilon - k - |A(t)| < q + b(q) + 1$, thus Theorem 1.3 implies that $B_t(S_t, \ell)$ contains a line ℓ_t. Since S_t cannot have more than $q - t$ collinear points, by the construction of $B_t(S_t, \ell)$ we get that ℓ_t is a $(q - t)$-secant of S_t, and hence so is ℓ. Thus S_t is of V_t type.

Now consider the case $|S_t| = 2k + \sqrt{q}$ (hence $\varepsilon = k - q + \sqrt{q} + t$), and suppose that S_t does not have two $(q - t)$-secants. We can repeat the above arguing and get that $B_t(S_t, \ell)$ is a Baer subplane because of Theorem 1.3. Then $|B_t(S_t, \ell)| = q + \sqrt{q} + 1 = 2q + 1 + \varepsilon - k - |A(t)|$ yields $|A(t)| = t$. The size of $\ell \cap B_t(S_t, \ell)$ is either 1 or $\sqrt{q} + 1$. In the latter case $k = q - \sqrt{q} - t$ and S_t is an altered Baer subplane. In the first case $k < q - t$; we show that this cannot occur. Denote by R the common point of ℓ and $B_t(S_t, \ell)$ and let P be any point of $B_t(S_t, \ell) \setminus \ell \cup S_t$. Among the lines of the Baer subplane $B_t(S_t, \ell)$ there are $\sqrt{q} + 1$ lines incident with P. One of them is PR, which meets S_t in at least $\sqrt{q} - 1 > 1$ points; each of the other $\sqrt{q} + 1$ lines of a subplane intersects S_t in at least $\sqrt{q} + 1 - t > 1$ points. Thus these $\sqrt{q} + 1$ lines cannot be tangents to S_t. But the pencil of lines through P contains $k = q - t$ tangents to S_t, one at each point of $\ell \cap S_t$, too. Thus the total number of lines through P is at least $\sqrt{q} + 1 + q - t > q + 1$, a contradiction.

References

Proof of a conjecture of Metsch

A. Gács: On a generalization of Rédei’s theorem, Combinatorica 23 (2003), 585–598.

A. Gács and Zs. Weiner: On (q + t,t)-arcs of type (0,2,t), Des. Codes Cryptogr. 29 (2003), 131–139.

P. Vandendriessche: Codes of Desarguesian projective planes of even order, projective triads and (q + t,t)-arcs of type (0,2,t), Finite Fields Appl. 17 (2011), 521–531.

Bence Csajbók
Department of Mathematics, Informatics and Economics
University of Basilicata
Campus Macchia Romana, via dell’Ateneo Lucano
I-85100 Potenza, Italy

MTA–ELTE Geometric and Algebraic Combinatorics Research Group
1117 Budapest, Pázmány Péter sétány 1/C, Hungary

e-mail: csajbokbcs.elte.hu

Tamás Héger
Department of Computer Science and
MTA–ELTE Geometric and Algebraic Combinatorics Research Group
Eötvös Loránd University
1117 Budapest, Pázmány Péter sétány 1/C, Hungary

e-mail: hegercs.elte.hu

György Kiss
Department of Geometry and
MTA–ELTE Geometric and Algebraic Combinatorics Research Group
Eötvös Loránd University
1117 Budapest, Pázmány Péter sétány 1/C, Hungary

e-mail: kisggycs.elte.hu