A Collection of
MTA–ELTE GAC manuscripts

Bence Csajbók, Guiseppe Marino, Olga Polverino

Classes and equivalence of linear sets in
$PG(1; q^n)$

2016
Classes and equivalence of linear sets in $\text{PG}(1, q^n)$

Bence Csajbók, Giuseppe Marino and Olga Polverino

Abstract

The equivalence problem of \mathbb{F}_q-linear sets of rank n of $\text{PG}(1, q^n)$ is investigated, also in terms of the associated variety, projecting configurations, \mathbb{F}_q-linear blocking sets of Rédei type and MRD-codes. We call an \mathbb{F}_q-linear set L_U of rank n in $\text{PG}(W, \mathbb{F}_{q^n}) = \text{PG}(1, q^n)$ simple if for any n-dimensional \mathbb{F}_q-subspace V of W, L_V is $\text{PGL}(2, q^n)$-equivalent to L_U only when U and V lie on the same orbit of $\Gamma \text{L}(2, q^n)$. We prove that $U = \{ (x, \text{Tr}_{q^n/q}(x)) : x \in \mathbb{F}_{q^n} \}$ defines a simple \mathbb{F}_q-linear set for each n. We provide examples of non-simple linear sets not of pseudoregulus type for $n > 4$ and we prove that all \mathbb{F}_q-linear sets of rank 4 are simple in $\text{PG}(1, q^4)$.

1 Introduction

Linear sets are natural generalizations of subgeometries. Let $\Lambda = \text{PG}(W, \mathbb{F}_{q^n}) = \text{PG}(r-1, q^n)$, where W is a vector space of dimension r over \mathbb{F}_{q^n}. A point set L of Λ is said to be an \mathbb{F}_q-linear set of Λ of rank k if it is defined by the non-zero vectors of a k-dimensional \mathbb{F}_q-vector subspace U of W, i.e.,

$$L = L_U = \{ (u)_{\mathbb{F}_{q^n}} : u \in U \setminus \{0\} \}.$$

The maximum field of linearity of an \mathbb{F}_q-linear set L_U is \mathbb{F}_t if $t \mid n$ is the largest integer such that L_U is an \mathbb{F}_t-linear set. In the recent years, starting from the paper [19] by Lunardon, linear sets have been used to construct or characterize various objects in finite geometry, such as blocking sets and multiple blocking sets in finite projective spaces, two-intersection sets in finite projective spaces, translation spreads of the Cayley Generalized Hexagon.

*The research was supported by Ministry for Education, University and Research of Italy MIUR (Project PRIN 2012 “Geometrie di Galois e strutture di incidenza”) and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INdAM).
translation ovoids of polar spaces, semifield flocks and finite semifields. For a survey on linear sets we refer the reader to [26], see also [15].

One of the most natural questions about linear sets is their equivalence. Two linear sets \(L_U \) and \(L_V \) of \(\text{PG}(r-1,q^n) \) are said to be \(\text{PTL-equivalent} \) (or simply \(\text{equivalent} \)) if there is an element \(\varphi \) in \(\text{PTL}(r,q^n) \) such that \(L_U^\varphi = L_V \). In the applications it is crucial to have methods to decide whether two linear sets are equivalent or not. For \(f \in \text{GL}(r,q^n) \) we have \(L_U^f = L_{U^f} \), where \(\varphi_f \) denotes the collineation of \(\text{PG}(W,F_{q^n}) \) induced by \(f \). It follows that if \(U \) and \(V \) are \(F_q \)-subspaces of \(W \) belonging to the same orbit of \(\text{GL}(r,q^n) \), then \(L_U \) and \(L_V \) are equivalent. The above condition is only sufficient but not necessary to obtain equivalent linear sets. This follows also from the fact that \(F_q \)-subspaces of \(W \) with different ranks can define the same linear set, for example \(F_q \)-linear sets of \(\text{PG}(r-1,q^n) \) of rank \(k \geq rn-n+1 \) are all the same: they coincide with \(\text{PG}(r-1,q^n) \). As it was showed recently in [7], if \(r = 2 \), then there exist \(F_q \)-subspaces of \(W \) of the same rank but on different orbits of \(\text{GL}(2,q^n) \) defining the same linear set of \(\text{PG}(1,q^n) \).

This observation motivates the following definition. An \(F_q \)-linear set \(L_U \) with maximum field of linearity \(F_q \) is called \(\text{simple} \) if for each \(F_q \)-subspace \(V \) of \(W \) with \(\dim_q(U) = \dim_q(V) \), \(L_U = L_V \) only if \(U \) and \(V \) are in the same orbit of \(\text{GL}(2,q^n) \) or, equivalently, if for each \(F_q \)-subspace \(V \) of \(W \) with \(\dim_q(U) = \dim_q(V) \), \(L_U \) is \(\text{PTL}(2,q^n) \)-equivalent to \(L_V \) only if \(U \) and \(V \) are in the same orbit of \(\text{GL}(2,q^n) \).

Natural examples of simple linear sets are the subgeometries (cf. [18, Theorem 2.6] and [14, Section 25.5]). In [6] it was proved that \(F_q \)-linear sets of rank \(n+1 \) of \(\text{PG}(2,q^n) \) admitting \((q+1) \)-secants are simple. This allowed the authors to translate the question of equivalence to the study of the orbits of the stabilizer of a subgeometry on subspaces and hence to obtain the complete classification of \(F_q \)-linear blocking sets in \(\text{PG}(2,q^4) \). Until now, the only known examples of non-simple linear sets are those of pseudoregulus type of \(\text{PG}(1,q^n) \) for \(n \geq 5 \) and \(n \neq 6 \), see [7].

In this paper we focus on linear sets of rank \(n \) of \(\text{PG}(1,q^n) \). We first introduce a method which can be used to find non-simple linear sets of rank \(n \) of \(\text{PG}(1,q^n) \). Let \(L_U \) be a linear set of rank \(n \) of \(\text{PG}(W,F_{q^n}) = \text{PG}(1,q^n) \) and let \(\beta \) be a non-degenerate alternating form of \(W \). Denote by \(\perp \) the orthogonal complement map induced by \(\text{Tr}_{q^n/q} \circ \beta \) on \(W \) (considered as an \(F_q \)-vector space). Then \(U \) and \(U^\perp \) defines the same linear set (cf. Result 2.1) and if \(U \) and \(U^\perp \) lie on different orbits of \(\text{GL}(W,F_{q^n}) \), then \(L_U \) is non-simple. Using this approach we show that there are non-simple linear sets of rank \(n \) of \(\text{PG}(1,q^n) \) for \(n \geq 5 \), not of pseudoregulus type (cf. Proposition
3.10). Contrary to what we expected initially, simple linear sets are harder to find than non-simple linear sets. We prove that the linear set of PG(1, q^n) defined by the trace function is simple (cf. Theorem 3.7). We also show that linear sets of rank n of PG(1, q^n) are simple for n ≤ 4 (cf. Theorem 4.5).

Moreover, in PG(1, q^n) we extend the definition of simple linear sets and introduce the Z(FL)-class and the GL-class for linear sets of rank n. In Section 5 we point out the meaning of these classes in terms of equivalence of the associated blocking sets, MRD-codes and projecting configurations.

2 Definitions and preliminary results

2.1 Dual linear sets with respect to a symplectic polarity of a line

For α ∈ \mathbb{F}_{q^n} and a divisor h of n we will denote by Tr_{q^n/q^h}(α) the trace of α over the subfield \mathbb{F}_{q^h}, that is, Tr_{q^n/q^h}(α) = α + αq^h + \ldots + αq^{n-h}. By N_{q^n/q^h}(α) we will denote the norm of α over the subfield \mathbb{F}_{q^h}, that is, N_{q^n/q^h}(α) = α^{1+q^h+\ldots+q^{n-h}}. Since in the paper we will use only norms over \mathbb{F}_q, the function N_{q^n/q} will be denoted simply by N.

Starting from a linear set \mathcal{L}_U of PG(r, q^n) and using a polarity \tau of the space it is always possible to construct another linear set, which is called dual linear set of \mathcal{L}_U with respect to the polarity \tau (see [26]). In particular, let \mathcal{L}_U be an \mathbb{F}_q-linear set of rank n of a line PG(W, \mathbb{F}_{q^n}) and let \beta : W \times W \rightarrow \mathbb{F}_{q^n} be a non-degenerate reflexive \mathbb{F}_{q^n}-sesquilinear form on the 2-dimensional vector space W over \mathbb{F}_{q^n} determining a polarity \tau. The map Tr_{q^n/q} \circ \beta is a non-degenerate reflexive \mathbb{F}_{q^n}-sesquilinear form on W, when W is regarded as a 2n-dimensional vector space over \mathbb{F}_q. Indeed, suppose the contrary, then there exists an element v ∈ W such that Tr_{q^n/q}(\beta(u, v)) = 0 for each u ∈ W. Then the image of \varphi: u ∈ W \mapsto \beta(u, v) ∈ \mathbb{F}_{q^n} is contained in the kernel of Tr_{q^n/q}, and hence the rank of \varphi over \mathbb{F}_q is at most n – 1. On the other hand, since \beta is non-degenerate and \varphi is \mathbb{F}_{q^n}-linear, we have rk_{\mathbb{F}_{q^n}} \varphi = 1 and rk_{\mathbb{F}_{q^n}} \varphi = n, a contradiction.

Let \perp_\beta and \perp_\beta^\perp be the orthogonal complement maps defined by \beta and Tr_{q^n/q} \circ \beta on the lattices of the \mathbb{F}_{q^n}-subspaces and \mathbb{F}_{q^n}-subspaces of W, respectively. The dual linear set of \mathcal{L}_U with respect to the polarity \tau is the \mathbb{F}_{q^n}-linear set of rank n of PG(W, \mathbb{F}_{q^n}) defined by the orthogonal complement \mathcal{U}_U^\perp and it will be denoted by \mathcal{L}_U. Also, up to projective equivalence, such a linear set does not depend on \tau [26, Proposition 2.5].
For a point \(P = (z)_{\mathbb{F}_{q^n}} \in \text{PG}(W, \mathbb{F}_{q^n}) \) the weight of \(P \) with respect to the linear set \(L_U \) is \(w_{L_U}(P) := \dim_q ((z)_{\mathbb{F}_{q^n}} \cap U) \).

Result 2.1. From [26, Property 2.6] (with \(r = 2, s = 0 \) and \(t = n \)) it can be easily seen that if \(L_U \) is an \(\mathbb{F}_q \)-linear set of rank \(n \) of a line \(\text{PG}(1, q^n) \) and \(L_U^{t} \) is its dual linear set with respect to a polarity \(\tau \), then \(w_{L_U^{t}}(P^{t}) = w_{L_U}(P) \) for each point \(P \in \text{PG}(1, q^n) \). If \(\tau \) is a symplectic polarity of a line \(\text{PG}(1, q^n) \), then \(P^{\tau} = P \) and hence \(L_U = L_U^{t} = L_U^{t, \tau} \).

2.2 \(\mathbb{F}_q \)-linear sets of \(\text{PG}(1, q^n) \) of class \(r \)

In this paper we investigate the equivalence of \(\mathbb{F}_q \)-linear sets of rank \(n \) of the projective line \(\text{PG}(W, \mathbb{F}_{q^n}) = \text{PG}(1, q^n) \). The first step is to determine the \(\mathbb{F}_q \)-vector subspaces of \(W \) defining the same linear set. This motivates the definition of the \(Z(\Gamma L) \)-class and \(\Gamma L \)-class of a linear set \(L_U \) of \(\text{PG}(1, q^n) \) (cf. Definitions 2.4 and 2.5). The next proposition relies on the characterization of functions over \(\mathbb{F}_q \) determining few directions. It states that the \(\mathbb{F}_q \)-rank of \(L_U \) of \(\text{PG}(1, q^n) \) is uniquely defined when the maximum field of linearity of \(L_U \) is \(\mathbb{F}_q \). This will allow us to state our definitions and results without further conditions on the rank of the corresponding \(\mathbb{F}_q \)-subspaces.

For an \(\mathbb{F}_q \) to \(\mathbb{F}_q \) function \(f \), the set of directions determined by \(f \) is

\[
D_f := \left\{ \frac{f(x) - f(y)}{x - y} : x, y \in \mathbb{F}_{q^n}, x \neq y \right\}.
\]

Theorem 2.2 (Ball et al. [3] and Ball [1]). Let \(f \) be a function from \(\mathbb{F}_q \) to \(\mathbb{F}_q \), \(q = p^h \), and let \(N \) be the number of directions determined by \(f \). Let \(s = p^e \) be maximal such that any line with a direction determined by \(f \) that is incident with a point of the graph of \(f \) is incident with a multiple of \(s \) points of the graph of \(f \). Then one of the following holds.

1. \(s = 1 \) and \((q + 3)/2 \leq N \leq q + 1 \),
2. \(e|h \), \(q/s + 1 \leq N \leq (q - 1)/(s - 1) \),
3. \(s = q \) and \(N = 1 \).

Moreover if \(s > 2 \), then the graph of \(f \) is \(\mathbb{F}_q \)-linear.

Proposition 2.3. Let \(L_U \) be an \(\mathbb{F}_q \)-linear set of \(\text{PG}(W, \mathbb{F}_{q^n}) = \text{PG}(1, q^n) \) of rank \(n \). The maximum field of linearity of \(L_U \) is \(\mathbb{F}_{q^d} \), where

\[
d = \min\{w_{L_U}(P) : P \in L_U\}.
\]
If the maximum field of linearity of L_U is \mathbb{F}_q, then the rank of L_U as an \mathbb{F}_q-linear set is uniquely defined, i.e. for each \mathbb{F}_q-subspace V of W if $L_U = L_V$, then $\dim_q(V) = n$.

Proof. Since the action of $\Gamma L(2,q^n)$ preserves the maximum field of linearity and the weight of points, we can assume, up to the action of $\Gamma L(2,q^n)$, that $U = \{(x,f(x)) : x \in \mathbb{F}_{q^n}\}$ for some q-polynomial f over \mathbb{F}_{q^n}. Since f is linear, $|L_U|$ is the size of the set of directions determined by f. Also, a line ℓ with slope m meets the graph of f in q^d points, where $t = w_{L_U}((1,m)\mathbb{F}_{q^n})$, i.e. $\left\{|z \in \mathbb{F}_{q^n}^* : f(z)/z = m\right\} = q^d - 1$.

Let $d = \min\{w_{L_U}(P) : P \in L_U\}$. If $q = p^r$, p prime, then p^{dr} is the largest p-power such that every line with a determined direction that meets the graph of f meets the graph of f in a multiple of $s = p^{dr}$ points. Then Theorem 2.2 yields that either $s = q^n$ and $f(x) = \lambda x$ for some $\lambda \in \mathbb{F}_{q^n}$, or \mathbb{F}_{q^n} is a proper subfield of \mathbb{F}_q^n and

$$q^{n-d} + 1 \leq |D_f| \leq \frac{q^n - 1}{q^d - 1}. \tag{1}$$

Moreover, if $q^d > 2$, then f is \mathbb{F}_{q^n}-linear. In our case we already know that f is \mathbb{F}_q-linear, so even in the case $q^d = 2$ it follows that U is an \mathbb{F}_q-subspace of W and hence L_U is an \mathbb{F}_q-linear set.

We show that \mathbb{F}_{q^n} is the maximum field of linearity of L_U. Suppose, contrary to our claim, that L_U is \mathbb{F}_q-linear of rank z for some $r > d$. Then L_U is also \mathbb{F}_q-linear of rank rz. It follows that $rz \leq n$ since otherwise $L_U = \text{PG}(1,q^n)$. Then for the size of L_U we get $|L_U| \leq \frac{(q^{rz} - 1)/(q^r - 1)}{(q^{n} - 1)/(q - 1)}$, and this number turns out to be less than the lower bound in (1). This shows $r = d$.

Now suppose that \mathbb{F}_q is the maximum field of linearity of L_U and let V be an r-dimensional \mathbb{F}_q-subspace of W such that $L_U = L_V$. We cannot have $r > n$ since $L_U \neq \text{PG}(1,q^n)$. Suppose, contrary to our claim, that $r \leq n - 1$. Then $|L_U| \leq \frac{(q^{n-1} - 1)/(q - 1)}{|L_U|}$ contradicting (1) which gives $q^{n-1} + 1 \leq |L_U|$. This concludes the proof. \hfill \Box

Now we can give the following definitions of classes of an \mathbb{F}_q-linear set of a line.

Definition 2.4. Let L_U be an \mathbb{F}_q-linear set of $\text{PG}(W,\mathbb{F}_{q^n}) = \text{PG}(1,q^n)$ of rank n with maximum field of linearity \mathbb{F}_q. We say that L_U is of $\mathcal{Z}(\Gamma L)$-class r if r is the largest integer such that there exist \mathbb{F}_q-subspaces U_1, U_2, \ldots, U_r of W with $L_{U_i} = L_U$ for $i \in \{1,2,\ldots,r\}$ and $U_i \neq \lambda U_j$ for each $\lambda \in \mathbb{F}_{q^n}$ and for each $i \neq j$, $i,j \in \{1,2,\ldots,r\}$.\hfill \Box
Definition 2.5. Let L_U be an \mathbb{F}_q-linear set of $\text{PG}(W, \mathbb{F}_q^n) = \text{PG}(1, q^n)$ of rank n with maximum field of linearity \mathbb{F}_q. We say that L_U is of ΓL-class s if s is the largest integer such that there exist \mathbb{F}_q-subspaces U_1, U_2, \ldots, U_s of W with $L_{U_i} = L_U$ for $i \in \{1, 2, \ldots, s\}$ and there is no $f \in \Gamma L(2, q^n)$ such that $U_i = U_j^f$ for each $i \neq j, i, j \in \{1, 2, \ldots, s\}$.

Simple linear sets (cf. Section 1) of $\text{PG}(1, q^n)$ are exactly those of ΓL-class one. The next proposition is easy to show.

Proposition 2.6. Let L_U be an \mathbb{F}_q-linear set of $\text{PG}(1, q^n)$ of rank n with maximum field of linearity \mathbb{F}_q and let φ be a collineation of $\text{PG}(1, q^n)$. Then L_U and L_U^φ have the same $\mathbb{Z}(\Gamma L)$-class and ΓL-class. \qed

Remark 2.7. Let L_U be an \mathbb{F}_q-linear set of rank n of $\text{PG}(1, q^n)$ with ΓL-class s and let U_1, U_2, \ldots, U_s be \mathbb{F}_q-subspaces belonging to different orbits of $\Gamma L(2, q^n)$ and defining L_U. The $\mathbb{Z}(\Gamma L)$-orbit of L_U is the set
\[
\bigcup_{i=1}^s \{L_{U_i^f} : f \in \Gamma L(2, q^n)\}.
\]

3 Examples of simple and non-simple linear sets of $\text{PG}(1, q^n)$

Let L_U be an \mathbb{F}_q-linear set of rank n of $\text{PG}(1, q^n)$. We can always assume (up to a projectivity) that L_U does not contain the point $((0, 1))_{\mathbb{F}_q^n}$. Then $U = U_f = \{(x, f(x)) : x \in \mathbb{F}_q^n\}$, for some q-polynomial $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$ over \mathbb{F}_q^n. For the sake of simplicity we will write L_f instead of L_{U_f} to denote the linear set defined by U_f.

According to Result 2.1 and using the same notations as in Section 2.1 if L_U is an \mathbb{F}_q-linear set of rank n of $\text{PG}(1, q^n)$ and τ is a symplectic polarity, then U^{\perp_τ} defines the same linear set as U. Since in general U^{\perp_τ} and U are not equivalent under the action of the group $\Gamma L(2, q^n)$, some linear sets of a line are harder to find than non-simple linear sets.

Consider the non-degenerate symmetric bilinear form of \mathbb{F}_q^n over \mathbb{F}_q defined by the following rule
\[
< x, y > := \text{Tr}_{q^n/q}(xy).
\] (2)

Then the adjoint map f of an \mathbb{F}_q-linear map $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$ of \mathbb{F}_q^n (with
respect to the bilinear form $\langle \cdot, \cdot \rangle$ is

\[\hat{f}(x) := \sum_{i=0}^{n-1} a_i^q x^{q^n-i}. \]

(3)

Let $\eta: \mathbb{F}_q^2 \times \mathbb{F}_q^n \to \mathbb{F}_q^n$ be the non-degenerate alternating bilinear form of \mathbb{F}_q^2 defined by

\[\eta((x, y), (u, v)) = xv - yu. \]

(4)

Then η induces a symplectic polarity on the line $\text{PG}(1, q^n)$ and

\[\eta'((x, y), (u, v)) = \text{Tr}_{q^n/q}(\eta((x, y), (u, v))) \]

(5)

is a non-degenerate alternating bilinear form on \mathbb{F}_q^2, when \mathbb{F}_q^2 is regarded as a $2n$-dimensional vector space over \mathbb{F}_q. We will always denote in the paper by \perp and \perp' the orthogonal complement maps defined by η and η' on the lattices of the \mathbb{F}_{q^n}-subspaces and the \mathbb{F}_q-subspaces of \mathbb{F}_q^2, respectively. Direct calculation shows that

\[U_f^\perp = U_f. \]

(6)

Result 2.1 and (6) allow us to slightly reformulate [4, Lemma 2.6].

Lemma 3.1 ([4]). Let $L_f = \{ \langle (x, f(x)) \rangle_{\mathbb{F}_q^n} : x \in \mathbb{F}_q^n \}$ be an \mathbb{F}_q-linear set of $\text{PG}(1,q^n)$ of rank n, with $f(x)$ a q-polynomial over \mathbb{F}_q^n, and let \hat{f} be the adjoint of f with respect to the bilinear form (2). Then for each point $P \in \text{PG}(1,q^n)$ we have $w_{L_f}(P) = w_{L_{\hat{f}}}(P)$. In particular, $L_f = L_{\hat{f}}$ and the maps defined by $f(x)/x$ and $\hat{f}(x)/x$ have the same image.

Lemma 3.2. Let φ be an \mathbb{F}_q-linear map of \mathbb{F}_q^n and for $\lambda \in \mathbb{F}_{q^n}$ let φ_λ denote the \mathbb{F}_q-linear map: $x \mapsto \varphi(\lambda x)/\lambda$. Then for each point $P \in \text{PG}(1,q^n)$ we have $w_{L_\varphi}(P) = w_{L_{\varphi_\lambda}}(P)$. In particular, $L_\varphi = L_{\varphi_\lambda}$.

Proof. The statements follow from $\lambda U_{\varphi_\lambda} = U_{\varphi}$.

Remark 3.3. The results of Lemmas 3.1 and 3.2 can also be obtained via Dickson matrices. For a q-polynomial $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$ over \mathbb{F}_q^n let D_f denote the associated Dickson matrix (or q-circulant matrix)

\[D_f := \begin{pmatrix} a_0 & a_1 & \cdots & a_{n-1} \\ a_1^q & a_0^q & \cdots & a_{n-2}^q \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1}^{q^{n-1}} & a_{n-2}^{q^{n-1}} & \cdots & a_0^{q^{n-1}} \end{pmatrix}. \]
When \(f(x) = \lambda x \) for some \(\lambda \in \mathbb{F}_{q^n} \) we will simply write \(D_\lambda \). The rank of the matrix \(D_f \) equals the rank of the \(\mathbb{F}_q \)-linear map \(f \), see for example [28]. We will denote the point \(\langle (1, \lambda) \rangle_{q^n} \) by \(P_\lambda \).

Transposition preserves the rank of matrices and \(D_f^T = D_f, \ D_\lambda^T = D_\lambda \). It follows that

\[
\dim_q \ker(D_f - D_\lambda) = \dim_q \ker(D_f - D_\lambda)^T = \dim_q \ker(D_f - D_\lambda),
\]

and hence for each \(\lambda \in \mathbb{F}_{q^n} \) we have \(w_{L_f}(P_\lambda) = w_{L_f}(P_\lambda) \).

Let \(f_\mu(x) = f(x^\mu) / \mu \). It is easy to see that \(D_{1/\mu} D_f D_\mu = D_{f_\mu} \) and

\[
\dim_q \ker(D_f - D_\lambda) = \dim_q \ker D_{1/\mu}(D_f - D_\lambda) D_\mu = \dim_q \ker(D_{f_\mu} - D_\lambda),
\]

and hence \(w_{L_f}(P_\lambda) = w_{L_{f_\mu}}(P_\lambda) \) for each \(\lambda \in \mathbb{F}_{q^n} \).

From the previous arguments it follows that linear sets \(L_f \) with \(f(x) = \hat{f}(x) \) are good candidates for being simple. In the next section we show that the trace function, which has the previous property, defines a simple linear set. We are going to use the following lemmas which will also be useful later.

Lemma 3.4. Let \(f \) and \(g \) be two linearized polynomials. If \(L_f = L_g \), then for each positive integer \(d \) the following holds

\[
\sum_{x \in \mathbb{F}_{q^n}^*} \left(\frac{f(x)}{x} \right)^d = \sum_{x \in \mathbb{F}_{q^n}^*} \left(\frac{g(x)}{x} \right)^d.
\]

Proof. If \(L_f = L_g = L \), then \(\{ f(x)/x : x \in \mathbb{F}_{q^n}^* \} = \{ g(x)/x : x \in \mathbb{F}_{q^n}^* \} =: H \). For each \(h \in H \) we have \(|\{ x : f(x)/x = h \}| = q^i - 1 \), where \(i \) is the weight of the point \(\langle (1, h) \rangle_{q^n} \in L \) w.r.t. \(U_f \), and similarly \(|\{ x : g(x)/x = h \}| = q^j - 1 \), where \(j \) is the weight of the point \(\langle (1, h) \rangle_{q^n} \in L \) w.r.t. \(U_g \). Because of the characteristic of \(\mathbb{F}_{q^n} \), we obtain:

\[
\sum_{x \in \mathbb{F}_{q^n}^*} \left(\frac{f(x)}{x} \right)^d = - \sum_{h \in H} h^d = \sum_{x \in \mathbb{F}_{q^n}^*} \left(\frac{g(x)}{x} \right)^d.
\]

\(\square \)

For the sake of completeness we give a proof of the following well-known result.

Lemma 3.5. For any prime power \(q \) and integer \(d \) we have \(\sum_{x \in \mathbb{F}_q^*} x^d = -1 \) if \(q - 1 | d \) and \(\sum_{x \in \mathbb{F}_q^*} x^d = 0 \) otherwise.

8
Proof. Let g denote a primitive element of \mathbb{F}_q and put $s = \sum_{i=0}^{n-2} g^i$. Then $sg^d = s$ and hence either $s = 0$, or $g^d = 1$. In the latter case $q - 1 \mid d$ since g was a primitive element and hence $x^d = 1$ for each $x \in \mathbb{F}_q$.

Lemma 3.6. Let $f(x) = \sum_{i=0}^{n-1} a_i x^i$ and $g(x) = \sum_{i=0}^{n-1} b_i x^i$ be two q-polynomials over \mathbb{F}_q^n, such that $L_f = L_g$. Then

$$a_0 = b_0,$$

and for $k = 1, 2, \ldots, n - 1$ it holds that

$$a_k a_{n-k} = b_k b_{n-k},$$

for $k = 2, 3, \ldots, n - 1$ it holds that

$$a_1 a_{k-1} a_{n-k} + a_k a_{n-k-1} a_{n-k} = b_1 b_{k-1} b_{n-k} + b_k b_{n-k-1} b_{n-k+1}.$$

Proof. We are going to use Lemma 3.5 together with Lemma 3.4 with different choices of d.

With $d = 1$ we have

$$\sum_{x \in \mathbb{F}_q^n} \sum_{i=0}^{n-1} a_i x^i - 1 = \sum_{i=0}^{n-1} a_i x^i - 1,$$

and hence

$$\sum_{i=0}^{n-1} a_i \sum_{x \in \mathbb{F}_q^n} x^i - 1 = \sum_{i=0}^{n-1} b_i \sum_{x \in \mathbb{F}_q^n} x^i - 1.$$

Since $q^n - 1$ cannot divide $q^i - 1$ with $i = 1, 2, \ldots, n - 1$, $a_0 = b_0 = c$ follows. Let φ denote the \mathbb{F}_q^n-linear map which fixes $(0, 1)$ and maps $(1, 0)$ to $(1, -c)$. Then $U_\varphi f = U_\varphi f$ and $U_\varphi g = U_\varphi g'$ with $f' = \sum_{i=0}^{n-1} a_i x^i$, $g' = \sum_{i=0}^{n-1} b_i x^i$ and of course with $L_{f'} = L_{g'}$. It follows that we may assume $c = 0$.

First we show that (8) holds. With $d = q^k + 1$, $1 \leq k \leq n - 1$ we obtain

$$\sum_{1 \leq i, j \leq n-1} a_i a_j^{q^k} \sum_{x \in \mathbb{F}_q^n} x^{q^i+1+q^j+q^k-q^k} = \sum_{1 \leq i, j \leq n-1} b_i b_j^{q^k} \sum_{x \in \mathbb{F}_q^n} x^{q^i+1+q^j+q^k-q^k}.$$

$\sum_{x \in \mathbb{F}_q^n} x^{q^i+1+q^j+q^k-q^k} = -1$ if and only if $q^i+q^{j+k} \equiv q^k+1 \pmod{q^n-1}$, and zero otherwise. Suppose that the former case holds.

First consider $j + k \leq n - 1$. Then $q^i+q^{j+k} \leq q^{n-1}+q^{n-1} < q^k+1 + 2(q^n-1)$ hence one of the following holds.
• If \(q^i + q^{i+k} = q^k + 1 \), then the right hand side is not divisible by \(q \), a contradiction.

• If \(q^i + q^{i+k} = q^k + 1 + (q^n - 1) = q^n + q^k \), then \(j+k = n \), a contradiction.

Now consider the case \(j + k \geq n \). Then \(q^i + q^{i+k} \equiv q^i + q^{i+k-n} \equiv q^k + 1 \pmod{q^n - 1} \). Since \(j + k \leq 2(n - 1) \), we have \(q^i + q^{i+k-n} \leq q^{n-1} + q^{n-2} < q^k + 1 + 2(q^n - 1) \), hence one of the following holds.

• If \(q^i + q^{i+k-n} = q^k + 1 \), then \(j + k = n \) and \(i = k \).

• If \(q^i + q^{i+k-n} = q^k + 1 + (q^n - 1) = q^n + q^k \), then there is no solution since \(j + k - n \notin \{k, n\} \).

Hence (8) follows. Now we show that (9) also holds. Note that in this case \(n \geq 3 \), otherwise there is no \(k \) with \(2 \leq k \leq n - 1 \). With \(d = q^k + q + 1 \), we obtain

\[
\sum_{1 \leq i, j, m \leq n-1} a_i a_j a_m^k \sum_{x \in \mathbb{F}_q} x^{q^i-1+q^{j+1}+q^{m+k}-q^k} = \\
\sum_{1 \leq i, j, m \leq n-1} b_i b_j b_m^k \sum_{x \in \mathbb{F}_q} x^{q^i-1+q^{j+1}+q^{m+k}-q^k}.
\]

\[
\sum_{x \in \mathbb{F}_q} x^{q^i-1+q^{j+1}+q^{m+k}-q^k} = -1 \text{ if and only if } q^i+q^{j+1}+q^{m+k} \equiv q^k+q+1 \pmod{q^n - 1}, \text{ and zero otherwise. Suppose that the former case holds.}
\]

First consider \(m+k \leq n-1 \). Then \(q^i+q^{j+1}+q^{m+k} \leq q^{n-1} + q^n + q^{n-1} < q^k + q + 1 + 2(q^n - 1) \) hence one of the following holds.

• If \(q^i+q^{j+1}+q^{m+k} = q^k + q + 1 \), then the right hand side is not divisible by \(q \), a contradiction.

• If \(q^i+q^{j+1}+q^{m+k} = q^k + q + 1 + (q^n - 1) = q^n + q^k + q \), then \(m+k = n \), \(j+1 = k \) and \(i = 1 \), a contradiction.

Now consider the case \(m+k \geq n \). Then \(q^i+q^{j+1}+q^{m+k} \equiv q^i+q^{j+1}+q^{m+k-n} \equiv q^k + q + 1 \pmod{q^n - 1} \). We have \(q^i+q^{j+1}+q^{m+k-n} \leq q^{n-1} + q^n + q^{n-2} < q^k + q + 1 + 2(q^n - 1) \) hence one of the following holds.

• If \(q^i+q^{j+1}+q^{m+k-n} = q^k + q + 1 \), then \(j+1 = k \), \(i = 1 \) and \(m+k = n \).

• If \(q^i+q^{j+1}+q^{m+k-n} = q^k + q + 1 + (q^n - 1) = q^n + q^k + q \), then \(j+1 = n \), \(i = k \) and \(m+k = n+1 \).

This concludes the proof.
3.1 Linear sets defined by the trace function

We show that there exist at least one simple \mathbb{F}_q-linear set in $\text{PG}(1, q^n)$ for each q and n. Let $V = \{(x, \text{Tr}_{q^n/\mathbb{F}_q}(x)) : x \in \mathbb{F}_{q^n}\}$. We show that $L_U = L_V$ occurs for an \mathbb{F}_q-subspace U of W if and only if $V = \lambda U$ for some $\lambda \in \mathbb{F}_{q^n}^*$, i.e. L_V is of $Z(\text{GL})$-class one and hence simple.

Theorem 3.7. Let $V = \{(x, \text{Tr}_{q^n/\mathbb{F}_q}(x)) : x \in \mathbb{F}_{q^n}\}$, then the \mathbb{F}_q-linear set L_V of $\text{PG}(1, q^n)$ is of $Z(\text{GL})$-class one.

Proof. Suppose $L_{U_f} = L_V$ with $U_f = \{(x, f(x)) : x \in \mathbb{F}_{q^n}\}$ and $f(x) = \sum_{i=0}^{n-1} a_i x^i$. We are going to use Lemma 3.6 with $g(x) = \text{Tr}_{q^n/\mathbb{F}_q}(x)$. The coefficients $b_0, b_1, \ldots, b_{n-1}$ of $g(x)$ are 1, hence $a_0 = 1$, and for $k = 1, 2, \ldots, n-1$

$$a_k a_{n-k}^q = 1,$$

for $k = 2, 3, \ldots, n-1$

$$a_1 a_{k-1}^q a_{n-k}^q + a_k a_{n-1}^q a_{n-k+1}^q = 2. \tag{11}$$

Note that (10) implies $a_i \neq 0$ for $i = 1, 2, \ldots, n-1$. First we prove

$$a_i = a_1^{1+q+\ldots+q^{i-1}} \tag{12}$$

by induction on i for each $0 < i < n$. The assertion holds for $i = 1$. Suppose that it holds for some integer $i - 1$ with $1 < i < n$. We prove that it also holds for i. Then (11) with $k = i$ gives

$$a_1 a_{i-1}^q a_{n-i}^q + a_i a_{n-1}^q a_{n-i+1}^q = 2. \tag{13}$$

Also, (10) with $k = i$, $k = i - 1$ and $k = 1$, respectively, gives

$$a_{n-i}^q = 1/a_i,$$

$$a_{n-i+1}^q = 1/a_{i-1}^q,$$

$$a_{n-1}^q = 1/a_1.$$

Then (13) gives

$$a_1 a_{i-1}^q/a_i + a_i/(a_1 a_{i-1}^q) = 2. \tag{14}$$

It follows that $a_1 a_{i-1}^q/a_i = 1$ and hence the induction hypothesis on a_{i-1} yields $a_i = a_1^{1+q+\ldots+q^{i-1}}$.

11
Finally we show $N(a_1) = 1$. First consider n even. Then (10) with $k = n/2$ gives $a_{n/2}^{q^{n/2}+1} = 1$. Applying (12) yields $N(a_1) = 1$. If n is odd, then (10) with $k = (n - 1)/2$ gives $a_{(n-1)/2}^{q^{(n-1)/2}} = 1$. Applying (12) yields $N(a_1) = 1$. It follows that $a_1 = \lambda^{q-1}$ for some $\lambda \in \mathbb{F}_{q^n}$ and hence $f(x) = \sum_{i=0}^{n-1} \lambda^{q-1}x^i$. Then $\lambda U_f = \{ (x, \text{Tr}_{q^n/q}(x)) : x \in \mathbb{F}_{q^n}^* \}$. \hfill \(\square\)

Remark 3.8. We point out that in the above theorem we do not have any assumption on the weight of points of L_U. In the special case when $L_U = L_V$ and L_U has a point of weight $n-1$, then the $\text{GL}(2, q^n)$-equivalence of U and V can be deduced also from [8, Theorem 2.3].

3.2 Non-simple linear sets

An \mathbb{F}_q-linear set of *pseudoregulus type* of $\text{PG}(1, q^n)$ is any linear set equivalent to $\{ ((x, x^q))_{\mathbb{F}_{q^n}} : x \in \mathbb{F}_{q^n}^* \}$. In [7] it was proved that the ΓL-class of such linear sets is $\varphi(n)/2$, hence they are non-simple for $n = 5$ and $n > 6$. So far, these are the only known non-simple linear sets of $\text{PG}(1, q^n)$. Here we show that \mathbb{F}_q-linear sets L_f of $\text{PG}(1, q^n)$ introduced by Lunardon and Polverino, which are not of pseudoregulus type ([22, Theorems 2 and 3]), are non-simple as well. Let us start by proving the following preliminary result.

Proposition 3.9. Let $f(x) = \sum_{i=0}^{n-1} a_i x^i$. There is an \mathbb{F}_q-semilinear map between U_f and U_f if and only if the following system of n equations has a solution $A, B, C, D \in \mathbb{F}_q$, $AD - BC \neq 0$, $\sigma = p^k$:

$$C + Da_i^\sigma - a_0A = \sum_{i=0}^{n-1} (Ba_i a_i^\sigma)^{q^{n-i}} ,$$

$$\ldots$$

$$Da_m^\sigma - (a_{n-m}A)^{q^m} = \sum_{i=0}^{n-1} (Ba_i a_i^\sigma)^{q^{n-i}} , \text{ with } m = 1, \ldots, n-2,$$

$$\ldots$$

$$Da_{n-1}^\sigma - (a_1A)^{q^{n-1}} = \sum_{i=0}^{n-1} (Ba_i a_i^\sigma)^{q^{n-i}} ,$$

where the indices are taken modulo n.

12
Proposition 3.10. Because of cardinality reasons the condition $AD - BC \neq 0$ is necessary. Then
$$\left\{ \left(\frac{x}{f(x)} \right) : x \in \mathbb{F}_{q^n} \right\} = \left\{ \frac{x^\sigma}{f(x)^\sigma} : x \in \mathbb{F}_{q^n} \right\}$$
holds if and only if
$$C x^\sigma + D \sum_{j=0}^{n-1} a_j^2 x^{\sigma q^j} = \sum_{i=0}^{n-1} o_i^q \left(A x^\sigma + B \sum_{j=0}^{n-1} a_j^2 x^{\sigma q^j} \right)^q$$
for each $x \in \mathbb{F}_{q^n}$. After reducing modulo $x^{\sigma q^n} - x$, this is a polynomial equation of degree at most q^{n-1} in the variable x^σ. It follows that it holds for each $x \in \mathbb{F}_{q^n}$ if and only if it is the zero polynomial. Comparing coefficients on both sides yields the assertion.

We are able to prove the following.

Proposition 3.10. Consider a polynomial of the form $f(x) = \delta x^q + x^{q^{n-1}}$, where $q > 4$ is a power of the prime p. If $n > 4$, then for each generator δ of the multiplicative group of \mathbb{F}_{q^n} the linear set L_f is not simple.

Proof. Lemma 3.1 yields $L_f = L_{\delta}$ thus it is enough to show the existence of δ such that there is no \mathbb{F}_{q^n}-semilinear map between U_f and U_{δ}. In the equations of Proposition 3.9 we have $a_1 = \delta$, $a_{n-1} = 1$ and $a_0 = a_2 = \ldots = a_{n-2} = 0$. If $n > 4$ then the first two and the last two equations of Proposition 3.9 give

$$C = (B \delta^{q+1})^{q^{n-1}} + B^q,$$
$$D \delta^q - A^q = 0,$$
$$0 = (B \delta)^{q^{n-1}},$$
$$D - (\delta A)^{q^{n-1}} = 0,$$

where $\sigma = p^k$ for some integer k. If there is a solution, then $B = C = 0$ and $(\delta A)^{q^{n-1}} \delta^q = A^q$. Taking q-th powers on both sides yield

$$\delta^{q^{n+1}} = A^{q^2-1}$$

and hence

$$\delta^{(q^{n+1})(q^{n-1})^{-1}} = 1.$$
For each σ let G_σ be the set of elements δ of \mathbb{F}_{q^r} satisfying (16). For each σ, G_σ is a subgroup of the multiplicative group M of \mathbb{F}_{q^n}. We show that these are proper subgroups of M. We have $G_{p^k} = M$ if and only if $q^n - 1$ divides $\frac{(p^k q^r + 1)(q^n - 1)}{q - 1}$, i.e. when $q - 1$ divides $p^k q + 1$. Since $\gcd(p^r q + 1, p^r - 1)$ is always 1, or $p^{\gcd(w,v)} + 1$, it follows that for $q > 4$ we cannot have $q - 1$ as a divisor of $p^k q + 1$.

It follows that for any generator δ of M we have $\delta \notin \cup_j G_{p^j}$ and hence $\delta^{\sigma q + 1} \neq A^{q^2 - 1}$ for each σ and for each A.

Remark 3.11. If $q = 4$, then (15) with $k = 2(n - 1) + 1$ asks for the solution of $\delta^3 = A^{15}$. When n is odd, then $\{x^3 : x \in \mathbb{F}_{4^n}\} = \{x^{15} : x \in \mathbb{F}_{4^n}\}$ and hence for each δ there exists A such that $\delta^3 = A^{15}$.

If $q = 3$, then (15) with $k = n - 1$ asks for the solution of $\delta^2 = A^8$. When n is odd, then $\{x^2 : x \in \mathbb{F}_{3^n}\} = \{x^8 : x \in \mathbb{F}_{3^n}\}$ and hence for each δ there exists A such that $\delta^2 = A^8$.

If $q = 2$, then (15) with $k = 0$ asks for the solution of $\delta^3 = A^3$. This equation always has a solution.

4 Linear sets of rank 4 of PG(1, q^4)

\mathbb{F}_q-linear sets of rank two of PG$(1, q^2)$ are the Baer sublines, which are equivalent. As we have mentioned in the introduction, subgeometries are simple linear sets, in fact they have $\mathcal{Z}(\Gamma \mathcal{L})$-class one (cf. [18, Theorem 2.6] and [14, Section 25.5]). There are two non-equivalent \mathbb{F}_q-linear sets of rank 3 of PG$(1, q^3)$, the linear sets of size $q^2 + q + 1$ and those of size $q^2 + 1$. Linear sets in both families are equivalent, since the stabilizer of a q-order subgeometry Σ of $\Sigma^* = \text{PG}(2, q^4)$ is transitive on the set of those points of $\Sigma^* \setminus \Sigma$ which are incident with a line of Σ and on the set of points of Σ^* not incident with any line of Σ (cf. Section 5.2 and [17]). In the first case we have the linear sets of pseudoregulus type with $\Gamma \mathcal{L}$-class 1 and $\mathcal{Z}(\Gamma \mathcal{L})$-class 2 (cf. Remark 5.6 and Example 5.1). In the second case we have the linear sets defined by Tr$_{q^4/q}$ with $\Gamma \mathcal{L}$-class and $\mathcal{Z}(\Gamma \mathcal{L})$-class 1 (cf. Theorem 3.7, see also [12, Corollary 6]).

From [6, Proposition 2.3] it follows that \mathbb{F}_q-linear sets of rank 5 in PG$(W, q^4) = \text{PG}(2, q^4)$ are simple. The orbits of 5-dimensional \mathbb{F}_q-subspaces of W under $\Gamma \mathcal{L}(3, q^4)$ are also determined (cf. [6, pg. 54]). The results related to Rédéi type blocking sets allow to determine all the orbits of 4-dimensional \mathbb{F}_q-subspaces of a two-dimensional \mathbb{F}_q-space under the group $\Gamma \mathcal{L}(2, q^4)$. The aim of this section is to prove that \mathbb{F}_q-linear sets of rank 4 in
PG(1, q^4), with maximum field of linearity F_q, are simple (cf. Theorem 4.5), since this does not follow from the above mentioned simplicity of F_q-linear blocking sets. As a corollary, a list of orbits under PΓL(2, q^4) of F_q-linear sets of rank 4 in PG(1, q^4) can be deduced from [6, pg. 54].

4.1 Subspaces defining the same linear set

Lemma 4.1. Let \(f(x) = \sum_{i=0}^{3} a_i x^q^i \) and \(g(x) = \sum_{i=0}^{3} b_i x^q^i \) be two \(q \)-polynomials over \(F_q^4 \), such that \(L_f = L_g \). Then

\[
N(a_1) + N(a_2) + N(a_3) + a_1^{1+q^2} a_2^{q+q^3} + a_2^{q+q^3} a_3^{1+q^2} + \text{Tr} q^4 / q \left(a_1 a_2^{q+q^3} a_3^{3} \right) =
\]

\[
N(b_1) + N(b_2) + N(b_3) + b_1^{1+q^2} b_2^{q+q^3} + b_2^{q+q^3} b_3^{1+q^2} + \text{Tr} q^4 / q \left(b_1 b_2^{q+q^3} b_3^{3} \right).
\]

Proof. We are going to follow the proof of Lemma 3.6. As in that proof, we may assume \(a_0 = b_0 = 0 \). In Lemma 3.4 take \(d = 1 + q + q^2 + q^3 \). We obtain

\[
\sum_{1 \leq i,j,k,m \leq 3} a_i a_j a_k a_m \sum_{x \in F_q^4} x^{q^i+q^j+q^k+q^l} =
\]

\[
\sum_{1 \leq i,j,k,m \leq 3} b_i b_j b_k b_m \sum_{x \in F_q^4} x^{q^i+q^j+q^k+q^l} = 1 \text{ if and only if }
\]

\[
q^i+q^j+q^{k+2}+q^{m+3} \equiv q^i+q^{j+1}+q^{k+2}+q^{m-1} \equiv 1+q+q^2+q^3 \pmod{q^4-1},
\]

and zero otherwise. Suppose that the former case holds.

First consider \(k = 1 \). Then \(q^i+q^{j+1}+q^{k+2}+q^{m-1} \leq q^3+q^4+q^2+1 \) hence one of the following holds.

- If \(q^i+q^{j+1}+q^{k+2}+q^{m-1} = 1 + q + q^2 + q^3 \), then \(m = i = j = k = 1 \).
- If \(q^i+q^{j+1}+q^{k+2}+q^{m-1} = 1 + q + q^2 + q^3 + q^4 - 1 = q + q^2 + q^3 + q^4 \),

then \(\{i,j+1,k+2,m-1\} = \{1,2,3,4\} \), hence one of the following holds

\[
i = 1, j = 3, k = 1, m = 3,
\]

\[
i = 2, j = 3, k = 1, m = 2.
\]

Now consider the case \(k \geq 2 \). Then \(q^i+q^{j+1}+q^{k+2}+q^{m-1} \equiv q^i+q^{j+1}+q^{k-2}+q^{m-1} \leq q^4+q^2+q^3+2(q^4-1) \) hence one of the following holds.
Proposition 4.2. Let $f(x)$ and $g(x)$ be two q-polynomials over \mathbb{F}_q, such that $L_f = L_g$. If the maximum field of linearity of f is \mathbb{F}_q, then

$$g(x) = f(\lambda x)/\lambda,$$

or

$$g(x) = \hat{f}(\lambda x)/\lambda.$$

Proof. By Proposition 2.3, the maximum field of linearity of g is also \mathbb{F}_q. First note that $L_g = L_f$ when g is as in the assertion (cf. Lemmas 3.1 and 3.2). Let $f(x) = \sum_{i=0}^{n} a_i x^i$ and $g(x) = \sum_{i=0}^{n} b_i x^i$. Let $b_0 = a_0$. From (8) with $n = 4$ and $k = 2$ we have $a_1 a_3^q = b_1 b_3^q$ and $a_2^{q+1} + q^2 = b_2^{q+1} + q^2$, respectively. From (9) with $n = 4$ and $k = 2$ we obtain

$$a_1^{q+1} a_2^q + a_2 a_3^{q+q^2} = b_1^{q+1} b_2^q + b_2 b_3^{q+q^2}. \quad (17)$$

Note that $a_1 a_3^q = b_1 b_3^q$ implies

$$N(b_1) N(b_3) = N(a_1) N(a_3). \quad (18)$$

Multiplying (17) by b_2 and applying $a_2^{q+1} + q^2 = b_2^{q+1} + q^2$ yields:

$$b_2^2 b_3^{q+q} - b_2(a_1^{q+1} a_2^q + a_2 a_3^{q+q^2}) + b_1^{q+1} a_2^{q+1} = 0. \quad (19)$$
First suppose \(b_1 b_2 b_3 \neq 0 \). Then (19) is a second degree polynomial in \(b_2 \).

Applying \(a_1 a_3^q = b_1 b_3^q \) it is easy to see that the roots of (19) are

\[
b_{2,1} = \frac{a_1^{q+1} a_2^2}{b_3^q + q},
\]

\[
b_{2,2} = \frac{a_2 a_3^{q^2+q}}{b_3^q + q}.
\]

First we consider \(b_2 = b_{2,1} \). Then \(a_2^{1+q^2} = b_2^{1+q^2} \) yields \(N(a_2) = N(b_3) \) and hence \(N(b_1) = N(a_3) \). In particular, \(N(b_1/a_3^q) = 1 \) and hence \(b_1 = a_3 \lambda q \) for some \(\lambda \in \mathbb{F}_{q^4}^* \). From \(a_1 a_3^q = b_1 b_3^q \) we obtain \(b_3 = a_1^{q^3} a_3/b_1^{q^3} = a_1^{q^3} \lambda q^{q-1} \). Applying this we get \(b_2 = a_1^{q^3+1} a_2^2/ b_3^{q^2+q} = a_2^{q^2} \lambda q^{-1} \) and hence

\[
g(x) = a_0 x + a_1^{q^3-1} x^q + a_2^{q^2} \lambda q^{q-1} x^{q^2} + a_1^{q^3} \lambda q^{q-1} x^{q^3} = f(x)/\lambda.
\]

as we claimed.

Now consider \(b_2 = b_{2,2} \). Then \(a_2^{1+q^2} = b_2^{1+q^2} \) yields \(N(a_3) = N(b_3) \) and hence \(N(a_1) = N(b_1) \). Hence \(b_1 = a_1 \lambda q^{-1} \) for some \(\lambda \in \mathbb{F}_{q^4}^* \). From \(a_1 a_3^q = b_1 b_3^q \) we obtain \(b_3 = a_1^{q^3} a_3/b_1^{q^3} = a_3 \lambda q^{q-1} \). Applying this we obtain

\[
b_2 = a_2 a_3^{q^2+q}/b_3^{q^2+q} = a_2 \lambda q^{-1} \] and hence

\[
g(x) = a_0 x + a_1 \lambda q^{-1} x^q + a_2^{q^2} \lambda q^{q-1} x^{q^2} + a_1^{q^3} \lambda q^{q-1} x^{q^3} = f(x)/\lambda.
\]

If \(b_1 = b_3 = 0 \), then either \(b_2 = 0 \) and the maximum field of linearity of \(g(x) \) is \(\mathbb{F}_{q^4} \), or \(b_2 \neq 0 \) and the maximum field of linearity of \(g(x) \) is \(\mathbb{F}_{q^4}^* \). Thus we may assume \(b_1 \neq 0 \) or \(b_3 \neq 0 \).

First assume \(b_2 \neq 0 \) and \(b_1 = 0 \). Then \(b_3 \neq 0 \) and (19) gives

\[
b_2 a_3^{q^2+q} = a_1^{q+1} a_2^2 + a_2 a_3^{q^2+q}.
\]

Then \(a_1 a_3^q = b_1 b_3^q \) yields either \(a_1 = 0 \) and \(b_2 a_3^{q^2+q} = a_2 a_3^{q^2+q} \), or \(a_3 = 0 \) and \(b_2 a_3^{q^2+q} = a_1^{q+1} a_2^q \). Taking \((q^2 + 1) \)-powers on both sides gives \(b_2^{q^2+1} N(b_3) = a_2^{q^2+1} N(a_3) \), or \(b_2^{q^2+1} N(b_1) = N(a_1) a_2^{q^2+1} \), respectively. Applying \(b_2^{q^2+1} = a_2^{q^2+1} \) we get \(N(b_1) = N(a_3) \), or \(N(b_3) = N(a_1) \), respectively. Note that the set of elements with norm 1 in \(\mathbb{F}_{q^4}^* \) is \(\{x^{q^2-1}; x \in \mathbb{F}_{q^4}^*\} \), thus in the first case there exists \(\lambda \in \mathbb{F}_{q^4}^* \) such that \(b_3 = a_3 \lambda q^{q-1} \). Then \(b_2 a_3^{q^2+q} = a_2 a_3^{q^2+q} \) yields \(b_2 = a_2 \lambda q^{q-1} \) and hence \(g(x) = a_0 x + a_2 \lambda q^{q-1} x^{q^2} + a_3 \lambda q^{q-1} x^{q^3} \).
In the second case the same reasoning yields $g(x) = a_0 x + a_2^q \lambda q^2 - 1 x^q + a_3^q \lambda q^3 - 1 x^q \lambda q^3$.

If $b_2 \neq 0$ and $b_3 = 0$, then the coefficient of x^q in $\hat{g}(x)$ is zero and the assertion follows from the above arguments applied to \hat{g} instead of g.

Now assume $b_2 = 0$ and $b_1 b_3 = 0$. Then $L_q = L_f$ is a linear set of pseudoregulus type and hence the assertion also follows from [16]. For the sake of completeness we present a proof also in this case. Equation $b_2^q + 1 = a_2^q + 1$ yields $a_2 = 0$ and equation $a_1 a_3^q = b_1 b_3^q$ yields $a_1 a_3 = 0$. Then from Lemma 4.1 we have

$$N(a_1) + N(a_3) = N(b_1) + N(b_3).$$

If $b_1 = 0$, then $b_3 \neq 0$ and either $a_1 = 0$ and $N(a_3) = N(b_3)$, or $a_3 = 0$ and $N(a_1) = N(b_3)$. In the first case $g(x) = a_0 x + a_3 \lambda q^3 - 1 x^q \lambda q^3$, in the second case $g(x) = a_0 x + a_3 \lambda q^3 - 1 x^q$. If $b_3 = 0$, then $b_1 \neq 0$ and either $a_1 = 0$ and $N(a_3) = N(b_1)$, or $a_3 = 0$ and $N(a_1) = N(b_1)$. In the first case $g(x) = a_0 x + a_2^q \lambda q^2 - 1 x^q \lambda q^2$, in the second case $g(x) = a_0 x + a_1 \lambda q^3 - 1 x^q$.

There is only one case left, when $b_2 = 0$ and $b_1 b_3 \neq 0$. Then from Lemma 4.1 and from $a_1 a_3^q = b_1 b_3^q$ it follows that

$$N(a_1) + N(a_3) = N(b_1) + N(b_3).$$

Together with (18) it follows that either $N(a_1) = N(b_1)$ and $N(a_3) = N(b_3)$, or $N(a_1) = N(b_3)$ and $N(a_3) = N(b_1)$. In the first case $g(x) = a_0 x + a_1 \lambda q^3 - 1 x^q \lambda q^2 + a_3 \lambda q^3 - 1 x^q \lambda q^3$, in the second case $g(x) = a_0 x + a_2^q \lambda q^2 - 1 x^q \lambda q^3 + a_1^q \lambda q^3 - 1 x^q \lambda q^3$, for some $\lambda \in \mathbb{F}_{q^4}$.

Now we are able to prove the following.

Theorem 4.3. Let L_U be an \mathbb{F}_q-linear set of a line PG(W, \mathbb{F}_{q^4}) of rank 4, with maximum field of linearity \mathbb{F}_q, and let β be any non-degenerate alternating form of W over \mathbb{F}_{q^4}. If V is an \mathbb{F}_q-vector subspace of W such that $L_U = L_V$, then either

$$V = \mu U,$$

or

$$V = \mu U^\perp,$$

for some $\mu \in \mathbb{F}_{q^4}^*$, where \perp is the orthogonal complement map induced by $\text{Tr}_{q^4/q} \circ \beta$ on the lattice of the \mathbb{F}_q-subspaces of W.

18
Proof. Assume that $L_U = L_V$ and let ϕ be a collineation of $\text{PG}(W, \mathbb{F}_{q^4})$ such that $L_U^\phi = L_V^\phi$ does not contain the point $((0, 1))_{\mathbb{F}_{q^4}}$. Denote by φ the \mathbb{F}_{q^4}-semilinear map inducing the collineation ϕ and by σ the associated field automorphism. Then $U^\varphi = U_f$ and $V^\varphi = V_g$ for some q-polynomials f and g over \mathbb{F}_{q^4}. By Proposition 4.2, taking also (6) into account, it follows that there exists $\lambda \in \mathbb{F}_{q^4}^*$ such that either $\lambda V^\varphi = U^\varphi$ or $\lambda V^\varphi = U^\varphi \perp'$, where \perp' is the orthogonal complement map induced by the non-degenerate alternating form $\eta' = \text{Tr}_{q^4/q} \circ \eta$, with η defined in (4). In the first case we have that $V = \mu U$, where $\mu = \frac{1}{\lambda^\varphi}$. In the second case we have $V = \frac{1}{\lambda^\varphi} U^\varphi \perp' \varphi^{-1}$. The map $\varphi \perp' \varphi^{-1}$ defines the orthogonal complement map on the lattice of the \mathbb{F}_q-subspaces of W induced by the non-degenerate alternating form $\gamma': (u, v) \in W \times W \mapsto \text{Tr}_{q^n/q} \circ \gamma$, where

$$
\gamma(u, v) := \eta(\varphi(u), \varphi(v)).
$$

Since β and γ are two non-degenerate alternating forms of the 2-dimensional \mathbb{F}_{q^4}-space W, it follows that there exists $a \in \mathbb{F}_{q^4}^*$ such that $\beta(x, y) = a \gamma(x, y)$ for each $x, y \in W$. Hence, straightforward computation show that $U^\varphi \perp' \varphi^{-1} = a U^\perp \delta$. The assertion follows with $\mu = \frac{2}{\lambda^\varphi}$.

4.2 Semilinear maps between U_f and U_g

The next result is just Proposition 3.9 with $n = 4$.

Corollary 4.4. Let $f(x) = a_0 x + a_1 x^q + a_2 x^{q^2} + a_3 x^{q^3}$. There is an \mathbb{F}_{q^4}-semilinear map between U_f and U_g if and only if the following system of four equations has a solution $A, B, C, D \in \mathbb{F}_{q^4}$, $AD - BC \neq 0$, $\sigma = q^k$.

\[
C + Da_0^\sigma - a_0 A = Ba_0 a_0^\gamma + (Ba_1 a_0^\gamma)^q + (Ba_2 a_0^\gamma)^{q^2} + (Ba_3 a_0^\gamma)^{q^3},
\]

\[
Da_1^\gamma - (a_3 A)g = Ba_0 a_1^\gamma + (Ba_1 a_1^\gamma)^q + (Ba_2 a_1^\gamma)^{q^2} + (Ba_3 a_1^\gamma)^{q^3},
\]

\[
Da_2^\gamma - (a_2 A)^q = Ba_0 a_2^\gamma + (Ba_1 a_2^\gamma)^q + (Ba_2 a_2^\gamma)^{q^2} + (Ba_3 a_2^\gamma)^{q^3},
\]

\[
Da_3^\gamma - (a_1 A)^{q^2} = Ba_0 a_3^\gamma + (Ba_1 a_3^\gamma)^{q^2} + (Ba_2 a_3^\gamma)^{q^3} + (Ba_3 a_3^\gamma)^q.
\]

Theorem 4.5. Linear sets of rank 4 of $\text{PG}(1, q^4)$, with maximum field of linearity \mathbb{F}_q, are simple.

Proof. Let $f = \sum_{i=0}^3 a_i x^{q^i}$. After a suitable projectivity we may assume $a_0 = 0$. We will use Corollary 4.4 with $\sigma \in \{1, q^2\}$. We may assume that
\(a_1 = 0\) and \(a_3 = 0\) do not hold at the same time since otherwise \(f\) is \(\mathbb{F}_{q^2}\)-linear.

First consider the case when \(N(a_1) = N(a_3)\). Let \(B = C = 0, D = A^{q^2}\) and take \(A\) such that \(A^{q-1} = a_3/a_1^q\). This can be done since \(N(a_3/a_1^q) = 1\). Then Corollary 4.4 with \(\sigma = q^2\) provides the existence of an \(\mathbb{F}_{q^4}\)-semilinear map between \(U_f\) and \(U_j\).

From now on we assume \(N(a_1) \neq N(a_3)\).

If \(a_2 = a_1 = 0\), then let \(\sigma = 1, A = D = 0, B = 1\) and \(C = a_3^{2q}\). If \(a_2 = a_3 = 0\), then let \(\sigma = 1, A = D = 0, B = 1\) and \(C = a_1^{2q}\).

Now consider the case \(a_2 \neq 0\) and \(a_1 a_3 \neq 0\). Let \(A = D = 0\). Then the equations of Corollary 4.4 with \(\sigma = 1\) yield

\[
C = B^{q^3} a_1^{2q^3} + B^{q^3} a_3^{2q^3}, \tag{22}
\]

\[
0 = B^q a_1^q a_3^q + B^q a_1^q a_3^q a_3^q. \tag{23}
\]

(23) is equivalent to \(0 = (Ba_1 a_3)^q + Ba_1 a_3\). Since \(X^{q^2} + X = 0\) has \(q^2\) solutions in \(\mathbb{F}_{q^4}\), for any \(a_1\) and \(a_3\) we can find \(B \in \mathbb{F}_{q^4}\) such that (23) is satisfied. If \(B^{q^3} a_1^{2q^3} + B^{q^3} a_3^{2q^3} \neq 0\), then let \(C\) be this field element. We show that this is always the case. Suppose, contrary to our claim, that \(B^{q^3} a_1^{2q^3} + B^{q^3} a_3^{2q^3} = 0\). Because of the choice of \(B\) (23) yields \(B^{q^3} a_1^{q^3} = -a_3^{q^3} a_3^{q^3}\). Since \(B \neq 0\) this implies

\[
-a_3^{2q^3}/a_1^{2q^3} = -a_3^{q^3} a_3^{q^3},
\]

and hence \(a_1^{q^2 + 1} = a_3^{q^2 + 1}\). A contradiction since \(N(a_1) \neq N(a_3)\). From now on we assume \(a_2 \neq 0\), we may also assume \(a_2 = 1\) after a suitable projectivity.

Corollary 4.4 with \(\sigma = 1\) yields

\[
C = (Ba_1^2)^{q^3} + B^{q^2} + (Ba_3^2)^q, \tag{24}
\]

\[
Da_1 - (a_3 A)^q = (Ba_1)^{q^3} + (Ba_3)^q, \tag{25}
\]

\[
D - A^{q^2} = (Ba_1 a_3)^{q^3} + (Ba_3 a_1)^q, \tag{26}
\]

\[
Da_3 - (a_1 A)^q = (Ba_1)^2 + (Ba_3)^q. \tag{27}
\]

The right hand side of (25) is the \(q\)-th power of the right hand side of (27) and hence \(D^q a_3^q - a_1 A = Da_1 - a_3^q A^q\), i.e.

\[
a_3^q(D + A)^q = a_1(D + A).
\]
Since a_1 or a_3 is non-zero, we have either $D = -A$, or $(D + A)^{q-1} = a_1/a_3^2$. The latter case can be excluded since in that case $N(a_1) = N(a_3)$. Let $D = -A$. Then the left hand side of (25) is $w(A) := -Aa_1 - a_3^2 A^q$. The kernel of w is trivial and hence B uniquely determines A. The inverse of w is

$$w^{-1}(x) = \frac{-xa_1^{q^2+q^3} + x^3a_1^{q^2+q^3} a_1^{q^2+q^3} - x^3a_1^{q^2+q^3} a_1^{q^2+q^3} + x^3a_1^{q^2+q^3} a_1^{q^2+q^3}}{N(a_1) - N(a_3)}.$$

Denote the right hand side of (25) by $r(B)$, the right hand side of (26) by $t(B)$. Then B has to be in the kernel of

$$K(x) := w^{-1}(r(x)) + (w^{-1}(r(x)))^q + t(x).$$

If $B = 0$, then $A = B = D = 0$ and hence this is not a suitable solution. It is easy to see that $Im t \subseteq \mathbb{F}_{q^2}$ and hence also $Im K \subseteq \mathbb{F}_{q^2}$, so the kernel of K has at least dimension 2.

Let $B \in \ker K$, $B \neq 0$. Let $A := w^{-1}(r(B))$ and $C := (Ba_1^{q^2})^q + B^{q^2} + (Ba_3^{q^2})^q$ (we recall $D = -A$). This gives a solution. We have to check that B can be chosen such that $AD - BC \neq 0$, i.e.

$$Q(B) := (w^{-1}(r(B)))^2 + B ((Ba_1^{q^2})^q + B^{q^2} + (Ba_3^{q^2})^q),$$

is non-zero. We have $w^{-1}(r(x))(N(a_1) - N(a_3)) = \sum_{i=0}^{3} c_i x^{q^i}$, where

$$c_0 = a_1^{1+q^2+q^3} a_3^q - a_1^{q^2+q^3} a_3^{1+q+q^2},$$

$$c_1 = a_3^{2q+q^2+q^3} - a_1^{q+q^3} a_3^{q+q^2},$$

$$c_2 = a_3^{q^2+q^3} a_1^q - a_1^{q+q^3} a_3^{q^2},$$

$$c_3 = a_3^{q^2+q^3} a_3^{q+q^3} - a_1^{q+q^2+2q^3}.$$
It follows that Q is always singular and it has rank 2 or 3. In particular, the rank of Q is 2 when the intersection of the planes $A : X_0 = 0$ and $B : X_1a_3^2 + X_2 + X_3a_1^2 = 0$ is contained in the plane $C : \sum_{i=0}^{3} c_i X_i = 0$. Straightforward calculations show that under our hypothesis ($a_1 \neq 0$ or $a_3 \neq 0, N(a_1) \neq N(a_3)$) this happens if and only if $1 = a_1^2 a_3$. We recall that the kernel of K has dimension at least two. Let

$$H = \{ (x, x^q, x^{q^2}, x^{q^3})_{q^4} : K(x) = 0 \}.$$

Our aim is to prove that H has points not belonging to the quadric Q, i.e. $H \not\subseteq Q$.

Note that $x \in F_{q^4} \mapsto (x, x^q, x^{q^2}, x^{q^3}) \in F_{q^4}$ is a vector-space isomorphism between F_{q^4} and the 4-dimensional F_q-space $\{(x, x^q, x^{q^2}, x^{q^3}) : x \in F_{q^4} \} \subset F_{q^4}$. Denote by \bar{H} the F_{q^4}-extension of H, i.e. the projective subspace of $PG(3, q^4)$ generated by the points of H. Then the projective dimension of \bar{H} is $\dim \ker K - 1$. Let ξ denotes the collineation $(X_0, X_1, X_2, X_3) \mapsto (X_0^q, X_1^q, X_2^q, X_3^q)$ of $PG(3, q^4)$. Then the points of \bar{H} are fixed points of ξ and hence ξ fixes the subspace \bar{H}. Note that the subspace of singular points of Q is always disjoint from H since it is contained in A, while H is disjoint from it.

First of all note that if $\dim \ker K = 4$, i.e. K is the zero polynomial, then H is a subgeometry of $PG(3, q^4)$ isomorphic to $PG(3, q)$, which clearly cannot be contained in Q. It follows that $\dim \ker K$ is either 3 or 2, i.e. H is either a q-order subplane or a q-order subline.

First assume $1 \neq a_1^2 a_3$, i.e. the case when Q has rank 3. If H is a q-order subplane, then H cannot be contained in Q. To see this, suppose the contrary and take three non-concurrent q-order sublines of H. The F_{q^4}-extensions of these sublines are also contained in Q, but there is at least one of them which does not pass through the singular point of Q, a contradiction. Now assume that H is a q-order subline. The singular point of Q is the intersection of the planes A, B and C. Straightforward calculations show that this point is $V = \langle (v_0, v_1, v_2, v_3) \rangle_{q^4}$, where

$$v_0 = 0,$$

$$v_1 = a_1^{q^2+q^3} (a_1^{q^3} - a_3^2 - 1),$$

$$v_2 = a_1^q a_3^q (a_1^{q^2} a_3^q - a_1^{q^3} a_3^2),$$

$$v_3 = a_3^{q+q^2} (1 - a_1^{q^2} a_3^q).$$

22
Suppose, contrary to our claim, that H is contained in Q. Then \tilde{H} passes through the singular point V of Q. Since \tilde{H} is fixed by ξ, it follows that the points V, V^{1}, V^{2}, V^{3} have to be collinear ($v_{0} = 0$ yields that these four points cannot coincide). Let M denote the 4×4 matrix, whose i-th row consists of the coordinates of V^{i-1} for $i = 1, 2, 3, 4$. The rank of M is two, thus each of its minors of order three is zero. Let $M_{i,j}$ denote the submatrix of M obtained by deleting the i-th row and j-th column of M. Then
\[
\det M_{1,2} = a_{1}^{q+1}(a_{1}^{q}a_{3} - 1)^{q+1}\alpha,
\]
\[
\det M_{1,4} = a_{3}^{q+1}(a_{3}^{q}a_{3} - 1)^{q+1}\beta,
\]
where
\[
\alpha = N(a_{1})(a_{1}^{q}a_{3}^{q} - 1) + N(a_{3})(1 - a_{1}^{q}a_{3} - a_{1}^{q}a_{3}^{q} + a_{1}a_{3}^{q}),
\]
\[
\beta = N(a_{1})(a_{1}^{q}a_{3}^{q} + a_{2}^{q}a_{3}^{q} - a_{1}^{q}a_{3} - 1) + N(a_{3})(1 - a_{1}^{q}a_{3}^{q}).
\]
Since a_{1} and a_{3} cannot be both zeros and $a_{1}^{q}a_{3} - 1 \neq 0$, we have $\alpha = \beta = 0$. But $\alpha - \beta = (N(a_{1}) - N(a_{3}))(a_{1}^{q}a_{3} - a_{1}a_{3}^{q})$. It follows that $a_{1}^{q}a_{3} \in \mathbb{F}_{q}$ and hence α can be written as $(N(a_{1}) - N(a_{3}))(a_{1}^{q}a_{3} - 1)$, which is non-zero.

This contradiction shows that V cannot be contained in a line fixed by ξ and hence \tilde{H} cannot pass through V. It follows that $H \not\subset Q$ and hence we can choose B such that $AD - BC \neq 0$.

Now consider the case $1 = a_{1}^{q}a_{3}$. Then Q is the union of two planes meeting each other in $\ell := A \cap B$. It is easy to see that $R := \langle (0, 1, -a_{3}^{2}, 0) \rangle_{q^{2}}$ and R^{3} are two distinct points of ℓ. Since $N(a_{1}) \neq N(a_{3})$ and $N(a_{1})N(a_{3}) = 1$, $\det \{R, R^{3}, R^{2}, R^{3} \} = N(a_{3})^{2} - 1$ cannot be zero and hence $R \not\subset H$, otherwise $\dim \langle R, R^{3}, R^{2}, R^{3} \rangle = \dim \tilde{H} \leq 2$. Suppose, contrary to our claim, that H is contained in one of the two planes of Q. Since $R \not\subset H$, such a plane can be written as $\langle H, R \rangle$ and since H is fixed by ξ and $\ell \subseteq \langle H, R \rangle$, we have $\langle H, R \rangle^{3} = \langle H, R^{3} \rangle = \langle H, R \rangle$. Thus R, R^{3}, R^{2}, R^{3} are coplanar, a contradiction.

\[\square\]

5 Different aspects of the classes of a linear set

5.1 Class of a linear set and the associated variety

Let L_{W} be an \mathbb{F}_{q}-linear set of rank k of $\text{PG}(W, \mathbb{F}_{q^{n}}) = \text{PG}(r-1, q^{n})$. Consider the projective space $\Omega = \text{PG}(W, \mathbb{F}_{q}) = \text{PG}(rn - 1, q)$. For each point $P =$
\(\langle u \rangle_{F_q^n} \) of \(\text{PG}(W, F_q^n) \) there corresponds a projective \((n-1)\)-subspace \(X_P := \text{PG}(\langle u \rangle_{F_q^n}, F_q) \) of \(\Omega \). The variety of \(\Omega \) associated to \(L_U \) is

\[
V_{r,n,k}(L_U) = \bigcup_{P \in L_U} X_P. \tag{28}
\]

This variety was already used in [2] and [16], see Example 5.1. The question of determining whether a linear set is simple or not is related to the existence of so-called \textit{irregular subspaces} (see [16]). The case of irregular sublines was already studied in [11].

A \((k-1)\)-space \(\mathcal{H} = \text{PG}(V, F_q) \) of \(\Omega \) is said to be a \textit{transversal} space of \(V(L_U) \) if \(\mathcal{H} \cap X_P \neq \emptyset \) for each point \(P \in L_U \), i.e. \(L_U = L_V \).

The \(Z(\Gamma L) \)-class of an \(F_q \)-linear set \(L_U \) of rank \(n \) of \(\text{PG}(W, F_{q^n}) = \text{PG}(1, q^n) \), with maximum field of linearity \(F_q \), is the number of transversal spaces of \(V_{2,n,n}(L_U) \) up to the action of the subgroup \(G \) of \(\text{PGL}(2n-1, q) \) induced by the maps \(x \in W \mapsto \lambda x \in W \), with \(\lambda \in F_q^* \). Note that \(G \) fixes \(X_P \) for each point \(P \in \text{PG}(1, q^n) \) and hence fixes the variety.

The maximum size of an \(F_q \)-linear set \(L_U \) of rank \(n \) of \(\text{PG}(1, q^n) \) is \((q^n - 1)/(q - 1) \). If this bound is attained (hence each point of \(L_U \) has weight one), then \(L_U \) is a \textit{maximum scattered} linear set of \(\text{PG}(1, q^n) \). For maximum scattered linear sets, the number of transversal spaces through \(Q \in V(L_U) \) does not depend on the choice of \(Q \) and this number is the \(Z(\Gamma L) \)-class of \(L_U \).

Example 5.1. Let \(U = \{ (x, x^q) : x \in F_q^n \} \) and consider the linear set \(L_U \). In [16] the variety \(V_{2,n,n}(L_U) \) was studied, and the transversal spaces were determined. It follows that the \(Z(\Gamma L) \)-class of \(L_U \) is \(\varphi(n) \), where \(\varphi \) is the Euler’s phi function.

5.2 Classes of linear sets as projections of subgeometries

Let \(\Sigma = \text{PG}(k-1, q) \) be a canonical subgeometry of \(\Sigma^* = \text{PG}(k-1, q^n) \). Let \(\Gamma \subset \Sigma^* \setminus \Sigma \) be a \((k-r-1)\)-space and let \(\Lambda \subset \Sigma^* \setminus \Gamma \) be an \((r-1)\)-space of \(\Sigma^* \). The projection of \(\Sigma \) from \textit{center} \(\Gamma \) to \textit{axis} \(\Lambda \) is the point set

\[
L = p_{\Gamma,\Lambda}(\Sigma) := \{ (\Gamma, P) \cap \Lambda : P \in \Sigma \}. \tag{29}
\]

In [23] Lunardon and Polverino characterized linear sets as projections of canonical subgeometries. They proved the following.

Theorem 5.2 ([23, Theorems 1 and 2]). Let \(\Sigma^*, \Sigma, \Lambda, \Gamma \) and \(L = p_{\Gamma,\Lambda}(\Sigma) \) be defined as above. Then \(L \) is an \(F_q \)-linear set of rank \(k \) and \(\langle L \rangle = \Lambda \).
Conversely, if L is an \mathbb{F}_q-linear set of rank k of $\Lambda = \text{PG}(r - 1, q^n) \subset \Sigma^*$ and $(L) = \Lambda$, then there is a $(k - r - 1)$-space Γ disjoint from Λ and a canonical subgeometry $\Sigma = \text{PG}(r - 1, q)$ disjoint from Γ such that $L = p_{\Gamma, \Lambda}(\Sigma)$.

Let L_U be an \mathbb{F}_q-linear set of rank k of $\Sigma = \text{PG}(W, \mathbb{F}_{q^n})$ such that for each k-dimensional \mathbb{F}_q-subspace V of W if $\text{PG}(V, \mathbb{F}_q)$ is a transversal space of $V_{r,n,k}(L_U)$, then there exists $\gamma \in \text{PGL}(W, \mathbb{F}_q)$, such that γ fixes the Desarguesian spread $\{X_P : P \in \mathbb{P}\}$ and $\text{PG}(U, \mathbb{F}_q)^\gamma = \text{PG}(V, \mathbb{F}_q)$. This is condition (A) from [7], and it is equivalent to say that L_U is a simple linear set. Then the main results of [7] can be formalized as follows.

Theorem 5.3 ([7]). Let $L_1 = p_{\Gamma_1, \Lambda_1}(\Sigma_1)$ and $L_2 = p_{\Gamma_2, \Lambda_2}(\Sigma_2)$ be two linear sets of rank k. If L_1 and L_2 are equivalent and one of them is simple, then there is a collineation mapping Γ_1 to Γ_2 and Σ_1 to Σ_2.

Theorem 5.4 ([7]). If L is a non-simple linear set of rank k in $\Lambda = (L)$, then there is a subspace $\Gamma = \Gamma_1 = \Gamma_2$ disjoint from Λ, and two q-order canonical subgeometries Σ_1, Σ_2 such that $L = p_{\Gamma, \Lambda}(\Sigma_1) = p_{\Gamma, \Lambda}(\Sigma_2)$, and there is no collineation fixing Γ and mapping Σ_1 to Σ_2.

Now we interpret the classes of linear sets, hence we are going to consider \mathbb{F}_q-linear sets of rank n of $\Lambda = (\Sigma)$, with maximum field of linearity \mathbb{F}_q. Arguing as in the proof of [7, Theorem 7], if L_U is non-simple, then for any pair U, V of n-dimensional \mathbb{F}_q-subspaces of W with $L_U = L_V$ such that $U^f \neq V$ for each $f \in \Gamma L(2, q^n)$ we can find a q-order subgeometry Σ of $\Sigma^* = \text{PG}(n - 1, q^n)$ and two $(n - 3)$-spaces Γ_1 and Γ_2 of Σ^*, disjoint from Σ and from Λ, lying on different orbits of $\text{Stab}(\Sigma)$. On the other hand, arguing as in [7, Theorem 6], if there exist two $(n - 3)$-subspaces Γ_1 and Γ_2 of Σ^*, disjoint from Σ and from Λ, belonging to different orbits of $\text{Stab}(\Sigma)$ and such that $L = p_{\Lambda, \Gamma_1}(\Sigma) = p_{\Lambda, \Gamma_2}(\Sigma)$, then it is possible to construct two n-dimensional \mathbb{F}_q-subspaces U and V of W with $L_U = L_V$ such that $U^f \neq V$ for each $f \in \Gamma L(2, q^n)$. Hence we can state the following.

The ΓL-class of L_U is the number of orbits of $\text{Stab}(\Sigma)$ on $(n - 3)$-spaces of Σ^* containing a Γ disjoint from Σ and from Λ such that $p_{\Lambda, \Gamma}(\Sigma)$ is equivalent to L_U.

5.3 Class of linear sets and linear blocking sets of Rédei type

A blocking set B of $\text{PG}(V, \mathbb{F}_{q^n}) = \text{PG}(2, q^n)$ is a point set meeting every line of the plane. Blocking sets of size $q^n + N \leq 2q^n$ with an N-secant are called blocking sets of Rédei type, the N-secants of the blocking set are called
Rédei lines. Let L_U be an \mathbb{F}_q-linear set of rank n of a line $\ell = \text{PG}(W, \mathbb{F}_{q^n})$, $W \leq V$, and let $w \in V \setminus W$. Then $(U, w)_{\mathbb{F}_q}$ defines an \mathbb{F}_q-linear blocking set of $\text{PG}(2, q^n)$ with Rédei line ℓ. The following theorem tells us the number of inequivalent blocking sets obtained in this way.

Theorem 5.5. The ΓL-class of an \mathbb{F}_q-linear set L_U of rank n of $\text{PG}(W, \mathbb{F}_{q^n}) = \text{PG}(1, q^n)$, with maximum field of linearity \mathbb{F}_q, is the number of inequivalent \mathbb{F}_q-linear blocking sets of Rédei type of $\text{PG}(V, \mathbb{F}_{q^n}) = \text{PG}(2, q^n)$ containing L_U.

Proof. \mathbb{F}_q-linear blocking sets of $\text{PG}(2, q^n)$ with more than one Rédei line are equivalent to those defined by $\text{Tr}_{q^n/q}(x)$ for some divisor m of n, see [21, Theorem 5]. Suppose first that L_U is equivalent to L_T, where $T = \{(x, \text{Tr}_{q^n/q}(x)): x \in \mathbb{F}_{q^n}\}$. According to Theorem 3.7 L_T, and hence also L_U, have $\mathbb{Z}(\Gamma L)$-class and ΓL-class one and hence there exists a unique point $P \in L_U$ such that $w_{L_U}(P) = n - 1$. Then for each $v \in V \setminus W$ the \mathbb{F}_q-linear blocking set defined by $(U, v)_{\mathbb{F}_q}$ has more than one Rédei line, each of them incident with P, and hence it is equivalent to the Rédei type blocking set obtained from $\text{Tr}_{q^n/q}(x)$.

Now let $B_1 = L_{U_1}$ and $B_2 = L_{U_2}$ be two \mathbb{F}_q-linear blocking sets of Rédei type with $\text{PG}(W, \mathbb{F}_{q^n})$ the unique Rédei line. Denote by U_1 and U_2 the \mathbb{F}_q-subspaces $W \cap V_1$ and $W \cap V_2$, respectively, and suppose $L_{U_1} = L_{U_2}$ with \mathbb{F}_q the maximum field of linearity. Then B_1 and B_2 have $(q + 1)$-secants and we have $V_1 = U_1 \oplus \langle u_1 \rangle_{\mathbb{F}_q}$ and $V_2 = U_2 \oplus \langle u_2 \rangle_{\mathbb{F}_q}$ for some $u_1, u_2 \in V \setminus W$.

If $B_1^\ell = B_2$, then [6, Proposition 2.3] implies $V_1^\ell = \lambda V_2$ for some $\lambda \in \mathbb{F}_{q^n}^*$. Such $f \in \Gamma L(3, q^n)$ has to fix W and it is easy to see that $U_1^\ell = \lambda U_2$, i.e. U_1 and U_2 are $\Gamma L(2, q^n)$-equivalent.

Conversely, if there exists $f \in \Gamma L(W, \mathbb{F}_{q^n})$ such that $U_1^\ell = U_2$, then $B_1^{\ell g} = B_2$, where $g \in \Gamma L(V, \mathbb{F}_{q^n})$ is the extension of f mapping u_1 to u_2. \qed

5.4 Class of linear sets and MRD-codes

In [27, Section 4] Sheekey showed that maximum scattered \mathbb{F}_q-linear sets of $\text{PG}(1, q^n)$ yield \mathbb{F}_q-linear maximum rank distance codes (MRD-codes) of dimension $2n$ and minimum distance $n - 1$, that is, a set \mathcal{M} of $q^{2n} n \times n$ matrices over \mathbb{F}_q forming an \mathbb{F}_q-subspace of $\mathbb{F}_{q^n}^{2n \times n}$ of dimension $2n$ such that the non-zero matrices of \mathcal{M} have rank at least $n - 1$. It can be easily seen that these MRD-codes have the so-called middle nucleus isomorphic to \mathbb{F}_{q^n}.

For definitions and properties on MRD-codes we refer the reader to [10] by Delsarte and [13] by Gabidulin. The kernel and the nuclei of MRD-codes are studied in [25].
For $n \times n$ matrices there are two different definitions of equivalence for MRD-codes in the literature. The arguments of [27, Section 4] yield the following interpretation of the ΓL-class:

- \mathcal{M} and \mathcal{M}' are equivalent if there are invertible matrices $A, B \in \mathbb{F}_q^{n \times n}$ and a field automorphism σ of \mathbb{F}_q such that $A\mathcal{M}'B = \mathcal{M}'$, see [27]. In this case the ΓL-class of L_U is the number of inequivalent MRD-codes obtained from the linear set L_U.

- \mathcal{M} and \mathcal{M}' are equivalent if there are invertible matrices $A, B \in \mathbb{F}_q^{n \times n}$ and a field automorphism σ of \mathbb{F}_q such that $A\mathcal{M}'B = \mathcal{M}'$, or $A\mathcal{M}'^T B = \mathcal{M}'$, see [9]. In this case the number of inequivalent MRD-codes obtained from the linear set L_U is between $\lfloor s/2 \rfloor$ and s, where s is the ΓL-class of L_U.

We summarize here the known non-equivalent families of MRD-codes arising from maximum scattered linear sets.

1. $L_{U_1} := \{(x^s)_{\mathbb{F}_q^n} : x \in \mathbb{F}_q^*\}$ ([5]) gives Gabidulin codes,

2. $L_{U_2} := \{(x^s)_{\mathbb{F}_q^n} : x \in \mathbb{F}_q^*, \gcd(s, n) = 1\}$ ([5]) gives generalized Gabidulin codes,

3. $L_{U_3} := \{(x, \delta x^s + x^{q^n-1})_{\mathbb{F}_q^n} : x \in \mathbb{F}_q^*\}$ ([22]) gives MRD-codes found by Sheekey in [27],

4. $L_{U_4} := \{(x, \delta x^s + x^{q^n-1})_{\mathbb{F}_q^n} : x \in \mathbb{F}_q^*, \gcd(s, n) = 1\}$ gives MRD-codes found by Sheekey in [27] and studied by Lunardon, Trombetti and Zhou in [24].

Remark 5.6. The linear sets L_{U_1} and L_{U_2} coincide, but when $s \notin \{1, n-1\}$, there is no $f \in \Gamma L(2, q^n)$ such that $U_1^f = U_2$. These linear sets are of pseudoregulus type, [20] (see also Example 5.1), and in [7] it was proved that the ΓL-class of these linear sets is $\varphi(n)/2$, hence they are examples of non-simple linear sets for $n = 5$ and $n > 6$.

It can be proved that the family L_{U_4} contains linear sets non-equivalent to those from the other families. We will report on this elsewhere.
References

[27] J. Sheekey: A new family of linear maximum rank distance codes,

Bence Csajbók
MTA–ELTE Geometric and Algebraic Combinatorics Research Group
ELTE Eötvös Loránd University, Budapest, Hungary
Department of Geometry
1117 Budapest, Pázmány P. stny. 1/C, Hungary
csajbok.bence@gmail.com

and

Dipartimento di Matematica e Fisica,
Università degli Studi della Campania “Luigi Vanvitelli”,
Viale Lincoln 5, I-81100 Caserta, Italy

Giuseppe Marino, Olga Polverino
Dipartimento di Matematica e Fisica,
Università degli Studi della Campania “Luigi Vanvitelli”,
Viale Lincoln 5, I-81100 Caserta, Italy
giuseppe.marino@unicampania.it, olga.polverino@unicampania.it