Research papers of Tamás Keleti

(These papers are not always identical to the published ones. These are simply the latest electronic versions I have. For example, "Added in proof" remarks are typically missing here.)
  1. Kornélia Héra, TK and András Máthé: Hausdorff dimension of union of affine subspaces,
    arXiv:1701.02299.

  2. Alan Chang, Marianna Csörnyei, Kornélia Héra and TK: Small unions of affine subspaces and skeletons via Baire category,
    arXiv:1701.01405.

  3. TK: Small union with large set of centers, to appear in Recent Developments in Fractals and Related Fielsds Conference on Fractals and Related Fields III, île de Porquerolles, France, 2015.
    arXiv:1701.027622

  4. TK, Máté Matolcsi, Fernando Mário de Oliveira Filho and Imre Z. Ruzsa: Better bounds for planar sets avoiding unit distances, Discrete & Computational Geometry 55 (2016), 642-661.
    arXiv:1501.00168
    The final publication is available at link.springer.com.

  5. TK: Are lines much bigger than line segments?, Proc. Amer. Math. Soc. 144 (2016), 1535-1541.
    arXiv:1409.5992
    The final publication is available at www.ams.org.

  6. TK, Dániel T. Nagy and Pablo Shmerkin: Squares and their centers, to appear in Journal d'Analyse Mathematique.
    arXiv:1428.1029

  7. Márton Elekes and TK: Decomposing the real line into Borel sets closed under addition, Mathematical Logic Quarterly 61 (2015), 466-473.
    arXiv:1406.0701
    The final publication is available at onlinelibrary.wiley.com.

  8. TK, András Máthé and Ondřej Zindulka: Hausdorff dimension of metric spaces and Lipschitz maps onto cubes, Int. Math. Res. Notices 2014 (2014), 289-302.
    free access to the full text
    arXiv:1203.0686

  9. Esa Järvenpää, Maarit Järvenpää and TK: Hausdorff dimension and non-degenerate families of projections, J Geom Anal 24 (2014), 2020-2034
    arXiv:1203.5296
    The final publication is available at link.springer.com.

  10. Márton Elekes, TK and András Máthé: Reconstructing geometric objects from the measures of their intersections with test sets, J. Fourier Anal. Appl. 19 (2013) 545-576.
    arXiv:1109.6169
    The final publication is available at link.springer.com.

  11. Viktor Harangi, TK, Gergely Kiss, Péter Maga, András Máthé, Pertti Mattila and Balázs Strenner: How large dimension guarantees a given angle?, Monatsh. Math. 171 (2013) 169-187.
    arXiv:1101.1426
    The final publication is available at link.springer.com.

  12. Esa Järvenpää, Maarit Järvenpää, TK and András Máthé: Continuously parametrized Besicovitch sets in R^n, Ann. Acad. Sci. Fenn. Math. 36 (2011), 411-421.
    pdf

  13. TK and Elliot Paquette: The trouble with the Koch curve built from n-gons , Amer. Math. Monthly 117 (2010), no. 2, 124-137.
    pdf, an illustration

  14. Márton Elekes, TK and András Máthé: Self-similar and self-affine sets; measure of the intersection of two copies, Ergodic Theory Dynam. Systems 117 (2010), no. 2, 124-137.
    pdf, ps

  15. TK: Construction of 1-dimensional subsets of the reals not containing similar copies of given patterns, Anal. PDE 1 (2008), no. 1, 29--33.
    pdf

  16. Bálint Farkas, Viktor Harangi, TK and Szilárd György Révész: Invariant decomposition of functions with respect to commuting invertible transformations , Proc. Amer. Math Soc. 136 (2008), 1325-1336.
    pdf

  17. TK: Periodic decomposition of measurable integer valued functions, J. Math. Anal. Appl. 337 (2008), 1394-1403.
    dvi, pdf, ps

  18. Gyula Károlyi, TK, Géza Kós and Imre Z. Ruzsa: Periodic decomposition of integer valued functions, Acta Math. Hungar. 119 (2008), no. 3, 227--242..
    dvi, pdf, ps

  19. TK and Mihalis Kolountzakis: On the determination of sets by their triple correlation in finite cyclic groups, Online Journal of Analytic Combinatorics 1 (2006), #4.
    dvi, pdf, ps

  20. TK: When is the modified von Koch snowflake non-self-intersecting?, Fractals 14 (2006), No. 3, 245-249.
    pdf, ps

  21. Márton Elekes and TK: Is Lebesgue measure the only sigma-finite invariant Borel measure?, J. Math. Anal. Appl. 321 (2006) 445-451.
    dvi, pdf, ps

  22. Márton Elekes and TK: Borel sets which are null or non-sigma-finite for every translation invariant measure, Adv. Math. 201 (2006), 102-115.
    dvi, pdf, ps

  23. Petr Holicky and TK: Borel classes of sets of extreme and exposed points in R^n , Proc. Amer. Math. Soc. 133 (2005), no. 6, 1851-1859..
    dvi, pdf, ps

  24. TK and Tamás Mátrai: A nowhere convergent series of functions which is somewhere convergent after a typical change of signs, Real Analysis Exchange 29 (2003/04), no. 2, 891-894.
    pdf, ps

  25. Udayan B. Darji and TK: Covering the real line with translates of a compact set, Proc. Amer. Math. Soc. 131 (2003), 2593-2596.
    dvi, pdf, ps

  26. Márton Elekes, TK and Vilmos Prokaj: The composition of derivatives has a fixed point, Real Analysis Exchange 27 (2001/02), 131-140.
    dvi, pdf, ps

  27. Miklós Abért and TK: Shuffle the plane, Proc. Amer. Math. Soc. 130 (2002), 549-553.
    dvi, pdf, ps

  28. TK and David Preiss: The balls do not generate all Borel sets using complements and countable disjoint unions, Math. Proc. Cambridge Philos. Soc. 128 (2000), no. 3, 539-547.
    dvi, pdf, ps

  29. TK: The Dynkin system generated by the large balls of R^n, Real Anal. Exchange 24 (1998/99), no. 2, 859-866.
    dvi, pdf, ps

  30. TK: Density and covering properties of intervals of R^n, Mathematika 47 (2000), 229-242.
    dvi, pdf, ps

  31. TK: A covering property of some classes of sets in R^n, Acta Univ. Carolin. Math. Phys. 39 (1998), no. 1-2, 111-118.
    dvi, pdf, ps

  32. TK: A 1-dimensional subset of the reals that intersects each of its translates in at most a single point, Real Anal. Exchange 24 (1998/99), no. 2, 843--844.
    dvi, pdf, ps

  33. TK: Difference functions of periodic measurable functions, Fund. Math. 157 (1998), no. 1, 15--32.
    dvi, pdf, ps

  34. TK: Periodic ${\rm Lip}\sp \alpha$ functions with ${\rm Lip}\sp \beta$ difference functions Colloq. Math. 76 (1998), no. 1, 99--103.
    dvi, pdf, ps

  35. TK: Periodic $L\sb p$ functions with $L\sb q$ difference functions, Real Anal. Exchange 23 (1997/98), no. 2, 431--440.
    dvi, pdf, ps

  36. TK: On the differences and sums of periodic measurable functions, Acta Math. Hungar. 75 (1997), no. 4, 279--286.
    dvi, pdf, ps

  37. TK: A peculiar set in the plane constructed by Vitushkin, Ivanov and Melnikov, Real Anal. Exchange 20 (1994/95), no. 1, 291--312.
    pdf, ps

  38. TK: The mountain climbers' problem, Proc. Amer. Math. Soc. 117 (1993), no. 1, 89--97.
    dvi, pdf, ps